Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticle stereochemistry-dependent endocytic processing improves in vivo mRNA delivery

Abstract

Stereochemistry can alter small-molecule pharmacokinetics, safety and efficacy. However, it is unclear whether the stereochemistry of a single compound within a multicomponent colloid such as a lipid nanoparticle (LNP) can influence its activity in vivo. Here we report that LNPs containing stereopure 20α-hydroxycholesterol (20α) delivered mRNA to liver cells up to 3-fold more potently than LNPs containing a mixture of both 20α- and 20β-hydroxycholesterols (20mix). This effect was not driven by LNP physiochemical traits. Instead, in vivo single-cell RNA sequencing and imaging revealed that 20mix LNPs were sorted into phagocytic pathways more than 20α LNPs, resulting in key differences between LNP biodistribution and subsequent LNP functional delivery. These data are consistent with the fact that nanoparticle biodistribution is necessary, but not sufficient, for mRNA delivery, and that stereochemistry-dependent interactions between LNPs and target cells can improve mRNA delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo LNP-mediated mRNA delivery varies batch-to-batch.
Fig. 2: Quantifying in vivo LNP-mediated mRNA delivery at single-cell resolution.
Fig. 3: The cellular response to 20α and 20mix LNPs.
Fig. 4: Stereochemistry-dependent mRNA delivery is not LNP specific.

Similar content being viewed by others

Data availability

All RNA sequencing data are available at GEO (GSE181333). All other data are represented in the main figures or supplementary figures.

Code availability

All code used to analyse the data is available at https://github.com/Jack-Feldman/barcode_count.

References

  1. Brooks, W. H., Guida, W. C. & Daniel, K. G. The significance of chirality in drug design and development. Curr. Top. Med. Chem. 11, 760–770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vargesson, N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res. C Embryo Today 105, 140–156 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Budau, M., Hancu, G., Rusu, A., Carcu-Dobrin, M. & Muntean, D. L. Chirality of modern antidepressants: an overview. Adv. Pharm. Bull. 7, 495–500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nguyen, L. A., He, H. & Pham-Huy, C. Chiral drugs: an overview. Int. J. Biomed. Sci. 2, 85–100 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Taechalertpaisarn, J. et al. Correlations between secondary structure– and protein–protein interface-mimicry: the interface mimicry hypothesis. Org. Biomol. Chem. 17, 3267–3274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fischer, P. M. The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr Protein Pept. Sci. 4, 339–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sago, C. D. et al. Modifying a commonly expressed endocytic receptor retargets nanoparticles in vivo. Nano Lett. 18, 7590–7600 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sahay, G. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31, 653–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Wittrup, A. et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel, S. et al. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 17, 5711–5718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lokugamage, M. P. et al. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv. Mater. 32, e1904905 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Baden, L. R. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2020).

    Article  PubMed  Google Scholar 

  19. Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, e1807748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kauffman, K. J. et al. Rapid, single-cell analysis and discovery of vectored mRNA transfection in vivo with a loxP-flanked tdTomato reporter mouse. Mol. Ther. Nucleic Acids 10, 55–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Duran-Frigola, M. et al. Extending the small-molecule similarity principle to all levels of biology with the Chemical Checker. Nat. Biotechnol. 38, 1087–1096 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Sirci, F. et al. Comparing structural and transcriptional drug networks reveals signatures of drug activity and toxicity in transcriptional responses. NPJ Syst. Biol. Appl. 3, 23 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Daniszewski, M. et al. Single cell RNA sequencing of stem cell-derived retinal ganglion cells. Sci. Data 5, 180013 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sommerfeld, S. D. et al. Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis. Sci. Immunol. 4, eaax4783 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Damm, E. M. et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 168, 477–488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wytinck, N. et al. Clathrin mediated endocytosis is involved in the uptake of exogenous double-stranded RNA in the white mold phytopathogen Sclerotinia sclerotiorum. Sci. Rep. 10, 12773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lorenz, C. et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 8, 627–636 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Kirschman, J. L. et al. Characterizing exogenous mRNA delivery, trafficking, cytoplasmic release and RNA–protein correlations at the level of single cells. Nucleic Acids Res. 45, e113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  Google Scholar 

  35. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mu, F. T. et al. EEA1, an early endosome-associated protein. EEA1 is a conserved α-helical peripheral membrane protein flanked by cysteine ‘fingers’ and contains a calmodulin-binding IQ motif. J. Biol. Chem. 270, 13503–13511 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Vanlandingham, P. A. & Ceresa, B. P. Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. J. Biol. Chem. 284, 12110–12124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cioni, J. M. et al. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176, 56–72.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herrera, M., Kim, J., Eygeris, Y., Jozic, A. & Sahay, G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomater. Sci. 9, 4289–4300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Aguilar, T., Espinosa-Cueto, P., Magallanes-Puebla, A. & Mancilla, R. The mannose receptor is involved in the phagocytosis of mycobacteria-induced apoptotic cells. J. Immunol. Res. 2016, 3845247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vergarajauregui, S., Martina, J. A. & Puertollano, R. LAPTMs regulate lysosomal function and interact with mucolipin 1: new clues for understanding mucolipidosis type IV. J. Cell Sci. 124, 459–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jovic, M., Sharma, M., Rahajeng, J. & Caplan, S. The early endosome: a busy sorting station for proteins at the crossroads. Histol. Histopathol. 25, 99–112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Markowitz, J. & Carson, W. E. 3rd Review of S100A9 biology and its role in cancer. Biochim. Biophys. Acta 1835, 100–109 (2013).

    CAS  PubMed  Google Scholar 

  45. Tiwari, P. M. et al. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat. Commun. 9, 3999 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. 51, 8529–8533 (2012).

    Article  CAS  Google Scholar 

  47. Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gustafson, H. H., Holt-Casper, D., Grainger, D. W. & Ghandehari, H. Nanoparticle uptake: the phagocyte problem. Nano Today 10, 487–510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Piotrowski-Daspit, A. S., Kauffman, A. C., Bracaglia, L. G. & Saltzman, W. M. Polymeric vehicles for nucleic acid delivery. Adv. Drug Deliv. Rev. 156, 119–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nedelcu, D., Liu, J., Xu, Y., Jao, C. & Salic, A. Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling. Nat. Chem. Biol. 9, 557–564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nachtergaele, S. et al. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol. 8, 211–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gan, Z. et al. Nanoparticles containing constrained phospholipids deliver mRNA to liver immune cells in vivo without targeting ligands. Bioeng. Transl. Med. 5, e10161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nano. 9, 648–655 (2014).

    Article  CAS  Google Scholar 

  57. Sager, H. B. et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Transl. Med. 8, 342ra380 (2016).

    Article  Google Scholar 

  58. Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Durham, R. Hughley, D. Gulick, N. Djeddar at Georgia Tech, and D. Alexis at the Emory Winship Cancer Institute. The authors thank K. Tiegren. This work was funded by the National Institutes of Health (R01GM132985, awarded to J.E.D., and UG3-TR002855, awarded to J.E.D. and P.J.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.Z.C.H., C.Z., P.J.S. and J.E.D. designed the experiments. All authors helped to perform the experiments. M.Z.C.H. and J.E.D. wrote the initial draft, which was sent to the other authors.

Corresponding author

Correspondence to James E. Dahlman.

Ethics declarations

Competing interests

J.E.D. is an advisor to GV. All other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Hideyoshi Harashima and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17.

Reporting Summary

Supplementary Data

Statistical data for Figs. 1 and 4 and Supplementary Figs. 3, 4 and 11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatit, M.Z.C., Dobrowolski, C.N., Lokugamage, M.P. et al. Nanoparticle stereochemistry-dependent endocytic processing improves in vivo mRNA delivery. Nat. Chem. 15, 508–515 (2023). https://doi.org/10.1038/s41557-023-01138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01138-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research