Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A columnar liquid quasicrystal with a honeycomb structure that consists of triangular, square and trapezoidal cells

Abstract

Quasicrystals are intriguing structures that have long-range positional correlations but no periodicity in real space, and typically with rotational symmetries that are ‘forbidden’ in conventional periodic crystals. Here, we present a two-dimensional columnar liquid quasicrystal with dodecagonal symmetry. Unlike previous dodecagonal quasicrystals based on random tiling, a honeycomb structure based on a strictly quasiperiodic tessellation of tiles is observed. The structure consists of dodecagonal clusters made up of triangular, square and trapezoidal cells that are optimal for local packing. To maximize the presence of such dodecagonal clusters, the system abandons periodicity but adopts a quasiperiodic structure that follows strict packing rules. The stability of random-tiling dodecagonal quasicrystals is often attributed to the entropy of disordering when strict tiling rules are broken, at the sacrifice of the long-range positional order. However, our results demonstrate that quasicrystal stability may rest on energy minimization alone, or with only minimal entropic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quasiperiodic tilings and their differences to conventional periodic tilings.
Fig. 2: T-shaped polyphilic molecules and their self-assembly.
Fig. 3: X-ray diffractograms of the CLQC and p4gmL phases of compound 1.
Fig. 4: Reconstructed electron-density maps.
Fig. 5: Model of the CLQC on the basis of a quasiperiodic tiling of plane using triangles, squares and trapezoids.
Fig. 6: Tiling and inflation rules that lead to the dodecagonal quasiperiodic tiling of the CLQC.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All data generated or analysed in this study are available in this article and its Supplementary Information. The datasets generated and analysed during the current study are publicly available in the Figshare repository at https://doi.org/10.6084/m9.figshare.21626570 (ref. 48).

References

  1. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article  CAS  Google Scholar 

  2. Steurer, W. & Deloudi, S. Crystallography of Quasicrystals. Concepts, Methods and Structures (Springer-Verlag, 2009).

  3. Penrose, R. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10, 266–271 (1974).

    Google Scholar 

  4. Senechal, M. Quasicrystals and Geometry (Cambridge Univ. Press, 1996).

  5. Zeng, X. B. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Ishimasa, T., Nissen, H.-U. & Fukano, Y. New ordered state between crystalline and amorphous in Ni–Cr particles. Phys. Rev. Lett. 55, 511–513 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, H., Li, D. X. & Kuo, K. H. New type of two-dimensional quasicrystal with twelvefold rotational symmetry. Phys. Rev. Lett. 60, 1645–1648 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Hayashida, K., Dotera, T., Takano, A. & Matsushita, Y. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007).

    Article  PubMed  Google Scholar 

  9. Zhang, J. W. & Bates, F. S. Dodecagonal quasicrystalline morphology in a poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) tetrablock terpolymer. J. Am. Chem. Soc. 134, 7636–7639 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Gillard, T. M., Lee, S. W. & Bates, F. S. Dodecagonal quasicrystalline order in a diblock copolymer melt. Proc. Natl Acad. Sci. USA 113, 5167–5172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Xiao, C. H., Fujita, N., Miyasaka, K., Sakamoto, Y. & Terasaki, O. Dodecagonal tiling in mesoporous silica. Nature 487, 349–353 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Urgel, J. I. et al. Quasicrystallinity expressed in two-dimensional coordination networks. Nat. Chem. 8, 657–662 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Yue, K. et al. Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants. Proc. Natl Acad. Sci. USA 113, 14195–14200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Passens, M. et al. Interface-driven formation of a two-dimensional dodecagonal fullerene quasicrystal. Nat. Comm. 8, 15367 (2017).

    Article  CAS  Google Scholar 

  16. Freedman, B. et al. Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440, 1166–1169 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Haji-Akbari, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedral. Nature 462, 773–777 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Dotera, T., Oshiro, T. & Ziherl, P. Mosaic two-lengthscale quasicrystals. Nature 506, 208–211 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Dotera, T., Bekku, S. & Ziherl, P. Bronze-mean hexagonal quasicrystal. Nat. Mat. 16, 987 (2017).

    Article  CAS  Google Scholar 

  20. Barkan, K., Diamant, H. & Lifshitz, R. Stability of quasicrystals composed of soft isotropic particles. Phys. Rev. B 83, 172201 (2011).

    Article  Google Scholar 

  21. Ungar, G. & Zeng, X. B. Frank–Kasper, quasicrystalline and related phases in liquid crystals. Soft Matter 1, 95–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Baake, M., Klitzing, R. & Schlottmann, M. Fractally shaped acceptance domains of quasiperiodic square-triangle tilings with dedecagonal symmetry. Phys. A 191, 554 (1992).

    Article  Google Scholar 

  23. Oxborrow, M. & Henley, C. L. Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals. Phys. Rev. B 48, 6966–6998 (1993).

    Article  CAS  Google Scholar 

  24. Zhang, R. B., Zeng, X. B. & Ungar, G. Direct AFM observation of individual micelles, tile decorations and tiling rules of a dodecagonal liquid quasicrystal. J. Phys. Condens. Matter 29, 414022 (2017).

    Article  Google Scholar 

  25. Wang, P. Y. & Mason, T. G. A Brownian quasi-crystal of pre-assembled colloidal Penrose tiles. Nature‏ 561, 94–99 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Dontabhaktuni, J., Ravnik, M. & Zumer, S. Quasicrystalline tilings with nematic colloidal platelets. Proc. Natl Acad. Sci. USA 111, 2464–2469 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Senyuk, B., Liu, Q., Bililign, E., Nystrom, P. D. & Smalyukh, I. I. Geometry-guided colloidal interactions and self-tiling of elastic dipoles formed by truncated pyramid particles in liquid crystals. Phys. Rev. E 91, 040501(R) (2015).

    Article  Google Scholar 

  28. Reinhardt, A., Schreck, J. S., Romano, F. & Doye, J. P. K. Self-assembly of two-dimensional binary quasicrystals: a possible route to a DNA quasicrystal. J. Phys. Condens. Matter 29, 014006 (2017).

    Article  PubMed  Google Scholar 

  29. Nova, E. G., Wong, C. K., Llombart, P. & Doye, J. P. K. How to design an icosahedral quasicrystal through directional bonding. Nature 596, 367–371 (2021).

    Article  Google Scholar 

  30. Ungar, G. et al. Self-assembly at different length scales: polyphilic star-branched liquid crystals and miktoarm star copolymers. Adv. Funct. Mater. 21, 1296–1323 (2011).

    Article  CAS  Google Scholar 

  31. Tschierske, C. et al. Complex tiling patterns in liquid crystals. Interface Focus 2, 669–680 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, B., Zeng, X. B., Baumeister, U., Ungar, G. & Tschierske, C. Liquid crystalline networks composed of pentagonal, square, and triangular cylinders. Science 307, 96–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, F. et al. The triangular cylinder phase: a new mode of self-assembly in liquid crystalline soft matter. J. Am. Chem. Soc. 129, 9578–9579 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, B. et al. Liquid crystals with complex superstructures. Angew. Chem. Int. Ed. 116, 4721–4725 (2004).

    Article  Google Scholar 

  35. Ungar, G. et al. GISAXS in the study of supramolecular and hybrid liquid crystals. J. Phys. Conf. Ser. 247, 012032 (2010).

    Article  Google Scholar 

  36. Liu, F. et al. The trapezoidal cylinder phase: a new mode of self-assembly in liquid–crystalline soft matter. J. Am. Chem. Soc. 130, 9666–9667 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Takakura, H., Shiono, M., Sato, T. J., Yamamoto, A. & Tsai, A. P. Ab initio structure determination of icosahedral Zn–Mg–Ho quasicrystals by density modification method. Phys. Rev. Lett. 86, 236–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Takakura, H., Gómez, C. P., Yamamoto, A., de Boissieu, M. & Tsai, A. P. Atomic structure of the binary icosahedral Yb–Cd quasicrystal. Nat. Mater. 6, 58–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Gähler F. in Crystallography of Dodecagonal Quasicrystals in Quasicrystalline Materials (eds Janot C. & Dubois J. M.) 272–284 (World Scientific 1988).

  40. Zeng, X. B. & Ungar, G. Inflation rules of square-triangle tilings: from approximants to dodecagonal liquid quasicrystals. Phil. Mag. 86, 1093–1103 (2006).

    Article  CAS  Google Scholar 

  41. Förster, S., Meinel, K., Hammer, R., Trautmann, M. & Widdra, W. Quasicrystalline structure formation in a classical crystalline thin-film system. Nature 502, 215–218 (2013).

    Article  PubMed  Google Scholar 

  42. Lifshitz, R. & Diamant, H. Soft quasicrystals—why are they stable? Phil. Mag. 87, 3021–3030 (2007).

    Article  CAS  Google Scholar 

  43. Poppe, M., Chen, C., Poppe, S., Liu, F. & Tschierske, C. A periodic dodecagonal supertiling by self-assembly of star-shaped molecules in the liquid crystalline state. Commun. Chem. 3, 70 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Engel, M., Damasceno, P. F., Phillips, C. L. & Glotzer, S. C. Computational self-assembly of a one-component icosahedral quasicrystal. Nat. Mater. 14, 109–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Zeng, X. B. et al. Complex multicolor tilings and critical phenomena in tetraphilic liquid crystals. Science 331, 1302–1306 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Glettner, B. et al. Liquid–crystalline kagome. Angew. Chem. Int. Ed. 47, 9063–9066 (2008).

    Article  CAS  Google Scholar 

  47. Liu, F. et al. Arrays of giant octagonal and square cylinders by liquid crystalline self-assembly of X-shaped polyphilic molecules. Nat. Commun. 3, 1104 (2012).

    Article  PubMed  Google Scholar 

  48. Zeng, X. et al. Data for a columnar liquid quasicrystal with a honeycomb structure that consists of triangular, square and trapezoidal cells. Figshare https://doi.org/10.6084/m9.figshare.21626570 (2023).

Download references

Acknowledgements

For support with the experiments we thank O. Shebanova and N. Terrill at station I22, Diamond Light Source, O. Bikondoa and P. Thompson at XMaS beamline (BM28), ESRF, and S. Sasaki and H. Masunaga at BL40B2, Spring-8. Financial support is acknowledged from EPSRC (EP-P002250 and EP-T003294), DFG (436494874-RTG 2670), the 111 Project 2.0 of China (BP0618008) and National Natural Science Foundation of China (92156013, 21761132033, 21374086).

Author information

Authors and Affiliations

Authors

Contributions

C.T. and G.U. conceived and directed the project. B.G., U.B. and B.C., under the supervision of C.T., synthesized the compound and carried out the differential scanning calorimetry, polarized optical microscopy and initial X-ray diffraction characterizations. X.Z. and F.L., supervised by G.U., carried out the powder and GIXRD experiments, and data analysis that led to reconstruction of the electron density maps. All the authors contributed to the construction of the structural model of the CLQC phase. Simulation of the CLQC diffraction pattern was carried out by X.Z. X.Z. wrote the manuscript with written contributions from all the co-authors.

Corresponding author

Correspondence to Xiangbing Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Marianne Imperor-Clerc, Shiki Yagai, Slobodan Zumer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1 (Synthesis and analytical data), 2 (Simulation of diffraction intensities of CLQC) and 3 (Additional data), Figs. 1–13 and Tables 1–5.

Supplementary Data 1

DSC source data for supplementary Figure 4.

Supplementary Data 2

SAXS source data for supplementary Figure 7.

Supplementary Data 3

WAXS source data for supplementary Figure 7.

Supplementary Data 4

SAXS source data for supplementary Figure 10.

Supplementary Data 5

SAXS experimental and fitted data for supplementary Figure 12.

Supplementary Data 6

Peak widths and standard errors source data for supplementary Figure 13.

Source data

Fig. 3a

SAXS source data of p4gmL and CLQC phases for Fig. 3a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Glettner, B., Baumeister, U. et al. A columnar liquid quasicrystal with a honeycomb structure that consists of triangular, square and trapezoidal cells. Nat. Chem. 15, 625–632 (2023). https://doi.org/10.1038/s41557-023-01166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01166-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing