Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intercontinental genomic parallelism in multiple three-spined stickleback adaptive radiations

Abstract

Parallelism, the evolution of similar traits in populations diversifying in similar conditions, provides strong evidence of adaptation by natural selection. Many studies of parallelism focus on comparisons of different ecotypes or contrasting environments, defined a priori, which could upwardly bias the apparent prevalence of parallelism. Here, we estimated genomic parallelism associated with components of environmental and phenotypic variation at an intercontinental scale across four freshwater adaptive radiations (Alaska, British Columbia, Iceland and Scotland) of the three-spined stickleback (Gasterosteus aculeatus). We combined large-scale biological sampling and phenotyping with restriction site associated DNA sequencing (RAD-Seq) data from 73 freshwater lake populations and four marine ones (1,380 fish) to associate genome-wide allele frequencies with continuous distributions of environmental and phenotypic variation. Our three main findings demonstrate that (1) quantitative variation in phenotypes and environments can predict genomic parallelism; (2) genomic parallelism at the early stages of adaptive radiations, even at large geographic scales, is founded on standing variation; and (3) similar environments are a better predictor of genome-wide parallelism than similar phenotypes. Overall, this study validates the importance and predictive power of major phenotypic and environmental factors likely to influence the emergence of common patterns of genomic divergence, providing a clearer picture than analyses of dichotomous phenotypes and environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling sites and the bootstrapped unrooted NJ tree for stickleback from 73 freshwater lake populations and 4 marine populations from four countries on two continents, based on 11,266 genetic markers for 1,380 individuals.
Fig. 2: Comparisons and analyses of environmental and phenotypic parallelism across adaptive radiations.
Fig. 3: Expected and observed counts of 50-kb windows containing an above 99% binomial expectation number of SNPs associated with M × F, environmental variables and phenotypic traits in at least two radiations.
Fig. 4: Associations between genome-wide M × F FST and environmental, phenotypic and genetic distance across all pairwise comparisons of 73 freshwater populations.

Similar content being viewed by others

Data availability

BAM files of the aligned reads for each individual and corresponding sample information have been deposited in the European Nucleotide Archive database under the project PRJEB20851, with the sample accession numbers ERS1831811–ERS1833111 and run accession numbers ERR2055459–ERR2056759.

Code availability

The scripts used for all analyses are archived through Github/Zenodo (https://doi.org/10.5281/zenodo.4024117).

References

  1. Schluter, D. The Ecology of Adaptive Radiations (Oxford Univ. Press, 2000).

  2. Gavrilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Arnold, S. J., Bürger, R., Hohenlohe, P. A., Ajie, B. C. & Jones, A. G. Understanding the evolution and stability of the G-matrix. Evolution 62, 2451–2461 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism: American Society of Naturalists E. O. Wilson award address. Am. Nat. 175, 623–639 (2010).

    Article  PubMed  Google Scholar 

  5. Elmer, K. R. et al. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5, 5168 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History (W. W. Norton, 1989).

  9. Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).

    Article  PubMed  Google Scholar 

  10. Roff, D. The evolution of the G matrix: selection or drift? Heredity 84, 135–142 (2000).

    Article  PubMed  Google Scholar 

  11. Arendt, J. & Reznick, D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol. Evol. 23, 26–32 (2008).

    Article  PubMed  Google Scholar 

  12. Stuart, Y. E. Divergent uses of ‘parallel evolution’ during the history of the American naturalist. Am. Nat. 193, 11–19 (2019).

    Article  PubMed  Google Scholar 

  13. Oke, K. B., Rolshausen, G., LeBlond, C. & Hendry, A. P. How parallel is parallel evolution? A comparative analysis in fishes. Am. Nat. 190, 1–16 (2017).

    Article  PubMed  Google Scholar 

  14. McGee, M. D., Neches, R. Y. & Seehausen, O. Evaluating genomic divergence and parallelism in replicate ecomorphs from young and old cichlid adaptive radiations. Mol. Ecol. 25, 260–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Soria-Carrasco, V. et al. Stick insect genomes reveal natural selection’s role in parallel speciation. Science 344, 738–742 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. MacColl, A. D. C. The ecological causes of evolution. Trends Ecol. Evol. 26, 514–522 (2011).

    Article  PubMed  Google Scholar 

  17. Elmer, K. R. & Meyer, A. Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol. Evol. 26, 298–306 (2011).

    Article  PubMed  Google Scholar 

  18. Conte, G. L., Arnegard, M. E., Peichel, C. L. & Schluter, D. The probability of genetic parallelism and convergence in natural populations. Proc. R. Soc. B 279, 5039–5047 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stuart, Y. E. et al. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat. Ecol. Evol. 1, 0158 (2017).

    Article  Google Scholar 

  21. Jacobs, A. et al. Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish. PLoS Genet. 16, 1008658 (2020).

    Article  CAS  Google Scholar 

  22. Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Foster, S. & Bell, M. The Evolutionary Biology of the Threespine Stickleback (Oxford Univ. Press, 1994).

  24. Taylor, E. B. & McPhail, J. D. Historical contingency and ecological determinism interact to prime speciation in sticklebacks, Gasterosteus. Proc. R. Soc. Lond. B 267, 2375–2384 (2000).

    Article  CAS  Google Scholar 

  25. Kaeuffer, R., Peichel, C. L., Bolnick, D. I. & Hendry, A. P. Parallel and nonparallel aspects of ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback. Evolution 66, 402–418 (2012).

    Article  PubMed  Google Scholar 

  26. Ravinet, M., Prodöhl, P. A. & Harrod, C. Parallel and nonparallel ecological, morphological and genetic divergence in lake-stream stickleback from a single catchment. J. Evol. Biol. 26, 186–204 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Magalhaes, I. S., D’Agostino, D., Hohenlohe, P. A. & MacColl, A. D. C. The ecology of an adaptive radiation of three-spined stickleback from North Uist, Scotland. Mol. Ecol. 25, 4319–4336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Jones, F. C. et al. A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks. Curr. Biol. 22, 83–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Raeymaekers, J. A. M. et al. Adaptive and non-adaptive divergence in a common landscape. Nat. Commun. 8, 267 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rennison, D. J., Stuart, Y. E., Bolnick, D. I. & Peichel, C. L. Ecological factors and morphological traits are associated with repeated genomic differentiation between lake and stream stickleback. Phil. Trans. R. Soc. B 374, 20180241 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. MacColl, A. D. C. & Aucott, B. Inappropriate analysis does not reveal the ecological causes of evolution of stickleback armour: a critique of Spence et al. 2013. Ecol. Evol. 4, 3509–3513 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Spoljaric, M. A. & Reimchen, T. E. 10,000 years later: evolution of body shape in Haida Gwaii three-spined stickleback. J. Fish Biol. 70, 1484–1503 (2007).

    Article  Google Scholar 

  34. De Schamphelaere, K. A. C. et al. Reproductive toxicity of dietary zinc to Daphnia magna. Aquat. Toxicol. 70, 233–244 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. Martins, C., Jesus, F. T. & Nogueira, A. J. A. The effects of copper and zinc on survival, growth and reproduction of the cladoceran Daphnia longispina: introducing new data in an ‘old’ issue. Ecotoxicology 26, 1157–1169 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Miller, C. T. et al. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait loci. Genetics 197, 405–420 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302–305 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Thompson, K. A., Osmond, M. M. & Schluter, D. Parallel genetic evolution and speciation from standing variation. Evol. Lett. 3, 129–141 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nelson, T. C. & Cresko, W. A. Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations. Evol. Lett. 2, 9–21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Paccard, A. et al. Repeatability of adaptive radiation depends on spatial scale: regional versus global replicates of stickleback in lake versus stream habitats. J. Hered. 111, 43–56 (2019).

    Google Scholar 

  41. Baldo, L., Riera, J. L., Salzburger, W. & Barluenga, M. Phylogeography and ecological niche shape the cichlid fish gut microbiota in Central American and African lakes. Front. Microbiol. 10, 2372 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fang, B., Kemppainen, P., Momigliano, P. & Merilä, J. On the causes of geographically heterogeneous parallel evolution in sticklebacks. Nat. Ecol. Evol. 4, 1105–1115 (2020).

    Article  PubMed  Google Scholar 

  43. Mäkinen, H. S. & Merilä, J. Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe—evidence for multiple glacial refugia. Mol. Phylogenet. Evol. 46, 167–182 (2008).

    Article  PubMed  CAS  Google Scholar 

  44. Liu, S., Hansen, M. M. & Jacobsen, M. W. Region-wide and ecotype-specific differences in demographic histories of threespine stickleback populations, estimated from whole genome sequences. Mol. Ecol. 25, 5187–5202 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Fang, B., Merilä, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol. Phylogenet. Evol. 127, 613–625 (2018).

    Article  PubMed  Google Scholar 

  46. Garduno-Paz, M. V., Couderc, S. & Adams, C. E. Habitat complexity modulates phenotype expression through developmental plasticity in the threespine stickleback. Biol. J. Linn. Soc. 100, 407–413 (2010).

    Article  Google Scholar 

  47. Coop, G., Witonsky, D., Di Rienzo, A. & Pritchard, J. K. Using environmental correlations to identify loci underlying local adaptation. Genetics 185, 1411–1423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hohenlohe, P. A. et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 6, e1000862 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Guo, B., DeFaveri, J., Sotelo, G., Nair, A. & Merilä, J. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol. 13, 19 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Glazer, A. M., Cleves, P. A., Erickson, P. A., Lam, A. Y. & Miller, C. T. Parallel developmental genetic features underlie stickleback gill raker evolution. EvoDevo 5, 19 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Day, T., Pritchard, J. & Schluter, D. A comparison of two sticklebacks. Evolution 48, 1723–1734 (1994).

    Article  PubMed  Google Scholar 

  52. Franchini, P. et al. Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Mol. Ecol. 23, 1828–1845 (2014).

    Article  PubMed  Google Scholar 

  53. McCairns, R. J. S. & Bernatchez, L. Plasticity and heritability of morphological variation within and between parapatric stickleback demes. J. Evol. Biol. 25, 1097–1112 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Peichel, C. L. & Marques, D. A. The genetic and molecular architecture of phenotypic diversity in sticklebacks. Phil. Trans. R. Soc. B 372, 20150486 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Marques, D. A. et al. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS Genet. 12, e1005887 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Burke, M. K., Liti, G. & Long, A. D. Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Mol. Biol. Evol. 31, 3228–3239 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kang, L., Aggarwal, D. D., Rashkovetsky, E., Korol, A. B. & Michalak, P. Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system. BMC Genom. 17, 233 (2016).

    Article  CAS  Google Scholar 

  58. Gompert, Z. & Messina, F. J. Genomic evidence that resource‐based trade‐offs limit host‐range expansion in a seed beetle. Evolution 70, 1249–1264 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Berner, D., Moser, D., Roesti, M., Buescher, H. & Salzburger, W. Genetic architecture of skeletal evolution in European lake and stream stickleback. Evolution 68, 1792–1805 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Pease, J. B., Haak, D. C., Hahn, M. W. & Moyle, L. C. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biol. 14, e1002379 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. McKinney, G. J., Larson, W. A., Seeb, L. W. & Seeb, J. E. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol. Ecol. Resour. 17, 356–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Roesti, M., Kueng, B., Moser, D. & Berner, D. The genomics of ecological vicariance in threespine stickleback fish. Nat. Commun. 6, 8767 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Catchen, J. M. et al. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol. Ecol. Resour. 17, 362–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Roesti, M., Moser, D. & Berner, D. Recombination in the threespine stickleback genome—patterns and consequences. Mol. Ecol. 22, 3014–3027 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Samuk, K. et al. Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol. Ecol. 26, 4378–4390 (2017).

    Article  PubMed  Google Scholar 

  67. Meier, J. I., Marques, D. A., Wagner, C. E., Excoffier, L. & Seehausen, O. Genomics of parallel ecological speciation in Lake Victoria cichlids. Mol. Biol. Evol. 35, 1489–1506 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).

    Article  PubMed  Google Scholar 

  69. Terekhanova, N. V. et al. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus. PLoS Genet. 10, e1004696 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Westram, A. M. et al. Clines on the seashore: the genomic architecture underlying rapid divergence in the face of gene flow. Evol. Lett. 2, 297–309 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shimada, Y., Shikano, T. & Merilä, J. A high incidence of selection on physiologically important genes in the three-spined stickleback, Gasterosteus aculeatus. Mol. Biol. Evol. 28, 181–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Xie, K. T. et al. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363, 81–84 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Henning, F. & Meyer, A. The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu. Rev. Genomics Hum. Genet. 15, 417–441 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Kess, T., Galindo, J. & Boulding, E. G. Genomic divergence between Spanish Littorina saxatilis ecotypes unravels limited admixture and extensive parallelism associated with population history. Int. J. Bus. Innov. Res. 17, 8311–8327 (2018).

    Google Scholar 

  75. Bohutínská, M. et al. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Preprint at BioRxiv https://doi.org/10.1101/2020.03.24.005397 (2020).

  76. Rennison, D. J., Samuk, K., Owens, G. L. & Miller, S. E. Shared patterns of genome-wide differentiation are more strongly predicted by geography than by ecology. Am. Nat. 195, 192–200 (2019).

    Article  PubMed  Google Scholar 

  77. Lucek, K., Sivasundar, A., Roy, D. & Seehausen, O. Repeated and predictable patterns of ecotypic differentiation during a biological invasion: lake–stream divergence in parapatric Swiss stickleback. J. Evol. Biol. 26, 2691–2709 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Berner, D., Roesti, M., Hendry, A. P. & Salzburger, W. Constraints on speciation suggested by comparing lake–stream stickleback divergence across two continents. Mol. Ecol. 19, 4963–4978 (2010).

    Article  PubMed  Google Scholar 

  79. Giles, N. Behavioural effects of the parasite Schistocephalus solidus (Cestoda) on an intermediate host, the three-spined stickleback, Gasterosteus aculeatus L. Anim. Behav. 31, 1192–1194 (1983).

    Article  Google Scholar 

  80. Spence, R., Wootton, R. J., Barber, I., Przybylski, M. & Smith, C. Ecological causes of morphological evolution in the three-spined stickleback. Ecol. Evol. 3, 1717–1726 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Reimchen, T. E. Incidence and intensity of Cyathocephalus truncatus and Schistocephalus solidus infection in Gasterosteus aculeatus. Can. J. Zool. 60, 1091–1095 (1982).

    Article  Google Scholar 

  82. MacColl, A. D. C. Parasite burdens differ between sympatric three-spined stickleback species. Ecography 32, 153–160 (2009).

    Article  Google Scholar 

  83. Stutz, W. E., Lau, O. L. & Bolnick, D. I. Contrasting patterns of phenotype-dependent parasitism within and among populations of threespine stickleback. Am. Nat. 183, 810–825 (2014).

    Article  PubMed  Google Scholar 

  84. Bassham, S., Catchen, J., Lescak, E., von Hippel, F. A. & Cresko, W. A. Repeated selection of alternatively adapted haplotypes creates sweeping genomic remodeling in stickleback. Genetics 209, 921–939 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Etter, P. D., Preston, J. L., Bassham, S., Cresko, W. A. & Johnson, E. A. Local de novo assembly of RAD paired-end contigs using short sequencing reads. PLoS ONE 6, e18561 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ali, O. A. et al. Rad capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202, 389–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/

  91. Günther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yeaman, S. et al. Convergent local adaptation to climate in distantly related conifers. Science 353, 1431–1433 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Storey, J. qvalue: Q-value estimation for false discovery rate control. R package version 2.0.0 (2015).

  94. Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient Swiss Army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Robertson, R. Young, A. Rahman, B. Santos, S. Goodacre, P. Halldorsson, B. K. Kristjánsson, D. Schluter, K. Samuk, D. Rennison and S. Miller for help with the sampling and sampling permits. We thank A. Lowe and L. Dean for help with the DNA extractions; C. Wiench, A. Stahlke and S. Hendricks for help making the RAD libraries; and J. Brookfield for discussion of the probability calculations. This work was funded by a NERC grant (no. NE/J02239X/1 to A.D.C.M.), and further support was provided by NIH grant no. P30GM103324.

Author information

Authors and Affiliations

Authors

Contributions

I.S.M., A.D.C.M. and J.R.W. conceived the project, interpreted the data and wrote the manuscript. I.S.M., D.D. and A.D.C.M. performed the fieldwork. I.S.M., M.M. and D.D. generated the phenotypic data. I.S.M. and P.A.H. generated the RAD data, and J.R.W., I.S.M. and P.A.H. analysed it. P.A.H., M.A.B. and S.S. helped with the sampling and revised the manuscript.

Corresponding authors

Correspondence to Isabel S. Magalhaes or James R. Whiting.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Methods, Figs. 1–8, Tables 1–14, captions for Supplementary Data 1–3 and references.

Reporting Summary

Peer Review Information

Supplementary Data 1

All Bayenv2 associated windows for window sizes of 50 kb, 75 kb, 100 kb, 200 kb and 0.1 cM.

Supplementary Data 2

Genes located in Bayenv2 associated windows along with GO information from Biomart.

Supplementary Data 3

Summary table with details of each individual analysed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magalhaes, I.S., Whiting, J.R., D’Agostino, D. et al. Intercontinental genomic parallelism in multiple three-spined stickleback adaptive radiations. Nat Ecol Evol 5, 251–261 (2021). https://doi.org/10.1038/s41559-020-01341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01341-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene