Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Patterns and consequences of age-linked change in local relatedness in animal societies

Abstract

The ultimate payoff of behaviours depends not only on their direct impact on an individual, but also on the impact on their relatives. Local relatedness—the average relatedness of an individual to their social environment—therefore has profound effects on social and life history evolution. Recent work has begun to show that local relatedness has the potential to change systematically over an individual’s lifetime, a process called kinship dynamics. However, it is unclear how general these kinship dynamics are, whether they are predictable in real systems and their effects on behaviour and life history evolution. In this study, we combine modelling with data from real systems to explore the extent and impact of kinship dynamics. We use data from seven group-living mammals with diverse social and mating systems to demonstrate not only that kinship dynamics occur in animal systems, but also that the direction and magnitude of kinship dynamics can be accurately predicted using a simple model. We use a theoretical model to demonstrate that kinship dynamics can profoundly affect lifetime patterns of behaviour and can drive sex differences in helping and harming behaviour across the lifespan in social species. Taken together, this work demonstrates that kinship dynamics are likely to be a fundamental dimension of social evolution, especially when considering age-linked changes and sex differences in behaviour and life history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Predicted male and female kinship dynamics under three demographic scenarios.
Fig. 2: Predicted (left-hand panels, orange outline) and observed (right-hand panels, black outline) kinship dynamics for males (green) and females (purple) in seven species of group-living mammal.
Fig. 3: Selection on group directed behaviours given kinship dynamics under three dispersal scenarios.

Similar content being viewed by others

Data availability

Data to reproduce these analyses are available at https://doi.org/10.17605/OSF.IO/PZFEX. Anonymized data to derive kinship dynamics are included for banded mongooses, chimpanzees, killer whales and spotted hyena. Data sharing agreements mean that for the remaining species, anonymized data to reproduce the analysis need to be requested from the corresponding author, all other forms of data request should be addressed to the manager of the system in question.

Code availability

Code to reproduce these analyses are available at https://doi.org/10.17605/OSF.IO/PZFEX. The repository includes a Mathematica file to run and reproduce the mathematical model; R code to implement the kinship dynamics simulation model and R code to analyse both the simulation and observed kinship dynamics data. A simplified version of the simulation model can be explored at samellisq.shinyapps.io/kinship_dynamics_shinyapp_basic/ or downloaded from github.com/samellisq/kinship_dynamics_shinyapp. In addition, an R package, comparekin, created as part of this study, can be accessed at https://www.github.com/samellisq/comparekin.

References

  1. Hamilton, W. D. The genetical evolution of social behaviour I, II. J. Theor. Biol. 7, 1–52 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Hamilton, W. D. Selfish and spiteful behaviour in an evolutionary model. Nature 228, 1218–1220 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. West, S. A., Griffin, A. S. & Gardner, A. Evolutionary explanations for cooperation. Curr. Biol. 17, 661–672 (2007).

    Article  Google Scholar 

  4. Bourke, A. F. G. The validity and value of inclusive fitness theory. Proc. R. Soc. B. 278, 3313–3320 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. West, S. A., Pen, I. & Griffin, A. S. Cooperation and competition between relatives. Science 296, 72–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Taylor, P. D. Inclusive fitness in a homogenous environment. Proc. R. Soc. B. 249, 299–302 (1992).

    Article  Google Scholar 

  7. Taylor, P. D. Altruism in viscous populations—an inclusive fitness model. Evol. Ecol. 6, 352–356 (1992).

    Article  Google Scholar 

  8. Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Cornwallis, C. K., West, S. A., Davis, K. E. & Griffin, A. S. Promiscuity and the evolutionary transition to complex societies. Nature 466, 969–972 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Silk, J. B. in Cooperation in Primates and Humans: Mechanisms and Evolution (eds. Kappeler, P. M. & Van Schaik, C. P.) 25–46 (Springer, 2006).

  11. Lukas, D. & Clutton-Brock, T. H. Social complexity and kinship in animal societies. Ecol. Lett. 21, 1129–1134 (2018).

    Article  PubMed  Google Scholar 

  12. Duncan, C., Gaynor, D., Clutton-Brock, T. H. & Dyble, M. The evolution of indiscriminate altruism in a cooperatively breeding mammal. Am. Nat. 193, 841–851 (2019).

    Article  PubMed  Google Scholar 

  13. Cornwallis, C. K., West, S. A. & Griffin, A. S. Routes to indirect fitness in cooperatively breeding vertebrates: Kin discrimination and limited dispersal. J. Evol. Biol. 22, 2445–2457 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Johnstone, R. A. & Cant, M. A. The evolution of menopause in cetaceans and humans: the role of demography. Proc. R. Soc. B. 277, 3765–3771 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Caswell, H. The formal demography of kinship: a matrix formulation. Demogr. Res. 41, 679–712 (2019).

    Article  Google Scholar 

  16. Rodrigues, A. M. M. Demography, life history and the evolution of age-dependent social behaviour. J. Evol. Biol. 31, 1340–1353 (2018).

    Article  PubMed  Google Scholar 

  17. Koster, J. et al. Kinship ties across the lifespan in human communities. Philos. Trans. R. Soc. B. Biol. Sci. 374, 20180069 (2019).

    Article  Google Scholar 

  18. Nichols, H. J., Arbuckle, K., Fullard, K. & Amos, W. Why don’t long-finned pilot whales have a widespread postreproductive lifespan? Insights from genetic data. Behav. Ecol. 31, 508–518 (2020).

    Article  Google Scholar 

  19. Croft, D. P. et al. Kinship dynamics: patterns and consequences of changes in local relatedness. Proc. R. Soc. B. 288, 20211129 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cant, M. A. & Johnstone, R. A. Reproductive conflict and the separation of reproductive generations in humans. Proc. Natl Acad. Sci. USA 105, 5332–5336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Croft, D. P. et al. Reproductive conflict and the evolution of menopause in killer whales. Curr. Biol. 27, 298–304 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Croft, D. P., Brent, L. J. N., Franks, D. W. & Cant, M. A. The evolution of prolonged life after reproduction. Trends Ecol. Evol. 30, 407–416 (2015).

    Article  PubMed  Google Scholar 

  23. Pettay, J. E., Lahdenperä, M., Rotkirch, A. & Lummaa, V. Costly reproductive competition between co-resident females in humans. Behav. Ecol. 27, 1601–1608 (2016).

    Google Scholar 

  24. Vullioud, C. et al. Social support drives female dominance in the spotted hyaena. Nat. Ecol. Evol. 3, 71–76 (2019).

    Article  PubMed  Google Scholar 

  25. Pope, T. R. Reproductive success increases with degree of kinship in cooperative coalitions of female red howler monkeys (Alouatta seniculus). Behav. Ecol. Sociobiol. 48, 253–267 (2000).

    Article  Google Scholar 

  26. Newton-Fisher, N. E. Roving females and patient males: a new perspective on the mating strategies of chimpanzees. Biol. Rev. 89, 356–374 (2014).

    Article  PubMed  Google Scholar 

  27. Pusey, A. E. Inbreeding avoidance in chimpanzees. Anim. Behav. 28, 543–552 (1980).

    Article  Google Scholar 

  28. Sugiyama, Y. Demographic parameters and life history of chimpanzees at Bossou, Guinea. Am. J. Phys. Anthropol. 124, 154–165 (2004).

    Article  PubMed  Google Scholar 

  29. Nishida, T. et al. Demography, female life history, and reproductive profiles among the chimpanzees of Mahale. Am. J. Primatol. 59, 99–121 (2003).

    Article  PubMed  Google Scholar 

  30. Vigilant, L., Hofreiter, M., Siedel, H. & Boesch, C. Paternity and relatedness in wild chimpanzee communities. Proc. Natl Acad. Sci. USA 98, 12890–12895 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walker, K. K. & Pusey, A. E. Inbreeding risk and maternal support have opposite effects on female chimpanzee dispersal. Curr. Biol. 30, R62–R63 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Frank, L. G. Social organization of the spotted hyaena (Crocuta crocuta). I. Demography. Anim. Behav. 34, 1500–1509 (1986).

    Article  Google Scholar 

  33. Holekamp, K. E., Smith, J. E., Strelioff, C. C., Van Horn, R. C. & Watts, H. E. Society, demography and genetic structure in the spotted hyena. Mol. Ecol. 21, 613–632 (2012).

    Article  PubMed  Google Scholar 

  34. Alberts, S. C. & Altmann, J. Balancing costs and opportunities: dispersal in male baboons. Am. Nat. 145, 279–306 (1995).

    Article  Google Scholar 

  35. Charpentier, M. J. E., Tung, J., Altmann, J. & Alberts, S. C. Age at maturity in wild baboons: genetic, environmental and demographic influences. Mol. Ecol. 17, 2026–2040 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Drickamer, L. C. & Vessey, S. H. Group changing in free-ranging male rhesus monkeys. Primates 14, 359–368 (1973).

    Article  Google Scholar 

  37. Weiß, B. M., Kulik, L., Ruiz-Lambides, A. V. & Widdig, A. Individual dispersal decisions affect fitness via maternal rank effects in male rhesus macaques. Sci. Rep. 6, 32212 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Davidian, E., Courtiol, A., Wachter, B., Hofer, H. & Höner, O. P. Why do some males choose to breed at home when most other males disperse? Sci. Adv. 2, e1501236 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Van Horn, R. C., Buchan, J. C., Altmann, J. & Alberts, S. C. Divided destinies: group choice by female savannah baboons during social group fission. Behav. Ecol. Sociobiol. 61, 1823–1837 (2007).

    Article  Google Scholar 

  40. Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B. & Balcomb, K. C. Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Comm. Spec. 12, 383–405 (1990).

  41. Cant, M. A., Nichols, H. J., Thompson, F. J. & Vitikainen, E. I. K. in Cooperative Breeding in Vertebrates: Studies of Ecolology, Evolution and Behaviour (eds Koenig, W. D. & Dickinson, J. L.) 318–337 (Cambridge Univ. Press, 2016).

  42. Nichols, H. J., Cant, M. A., Hoffman, J. I. & Sanderson, J. L. Evidence for frequent incest in a cooperatively breeding mammal. Biol. Lett. 10, 3–6 (2014).

    Article  Google Scholar 

  43. Ford, M. J. et al. Inbreeding in an endangered killer whale population. Anim. Conserv. 21, 423–432 (2018).

    Article  Google Scholar 

  44. Harts, A. M. F., Schwanz, L. E. & Kokko, H. Demography can favour female-advantageous alleles. Proc. R. Soc. B Biol. Sci. 281, 20140005 (2014).

    Article  Google Scholar 

  45. Crowley, P. H. Sexual dimorphism with female demographic dominance: age, size, and sex ratio at maturation. Ecology 81, 2592–2605 (2000).

    Article  Google Scholar 

  46. Dyble, M. & Clutton-Brock, T. H. Contrasts in kinship structure in mammalian societies. Behav. Ecol. 31, 971–977 (2020).

    Article  Google Scholar 

  47. Johnstone, R. A. & Cant, M. A. Sex differences in dispersal and the evolution of helping and harming. Am. Nat. 172, 318–330 (2008).

    Article  PubMed  Google Scholar 

  48. Dyble, M., Migliano, A. B., Page, A. E. & Smith, D. Relatedness within and between Agta residential groups. Evol. Hum. Sci. 3, 1–11 (2021).

    Google Scholar 

  49. Lahdenperä, M., Gillespie, D. O. S., Lummaa, V. & Russell, A. F. Severe intergenerational reproductive conflict and the evolution of menopause. Ecol. Lett. 15, 1283–1290 (2012).

    Article  PubMed  Google Scholar 

  50. Hawkes, K., O’Connell, J. F. & Blurton Jones, N. G. Hadza women’s time allocation, offspring provisioning, and the evolution of long postmenopausal life spans. Curr. Anthropol. 38, 551–577 (1997).

    Article  Google Scholar 

  51. Gerloff, U., Hartung, B., Fruth, B., Hohmann, G. & Tautz, D. Intracommunity relationships, dispersal pattern and paternity success in a wild living community of Bonobos (Pan paniscus) determined from DNA analysis of faecal samples. Proc. R. Soc. B. Biol. Sci. 266, 1189–1195 (1999).

    Article  CAS  Google Scholar 

  52. Eriksson, J. et al. Y-chromosome analysis confirms highly sex-biased dispersal and suggests a low male effective population size in bonobos (Pan paniscus). Mol. Ecol. 15, 939–949 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Opie, C., Shultz, S., Atkinson, Q. D., Currie, T. & Mace, R. Phylogenetic reconstruction of Bantu kinship challenges main sequence theory of human social evolution. Proc. Natl Acad. Sci. USA 111, 17414–17419 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thompson, M. E. How can non-human primates inform evolutionary perspectives on female-biased kinship in humans? Philos. Trans. R. Soc. B Biol. Sci. 374, 20180074 (2019).

    Article  Google Scholar 

  55. Watts, D. P. in The Evolution of Primate Societies (eds Mitani, J. C. et al.) 113–142 (Univ. Chicago Press, 2012).

  56. Knipper, C. et al. Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proc. Natl Acad. Sci. USA 114, 10083–10088 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Furtwängler, A. et al. Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1915 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sugiyama, Y. Sex-biased dispersal of human ancestors. Evol. Anthropol. 26, 172–180 (2017).

    Article  PubMed  Google Scholar 

  59. Surowiec, A., Snyder, K. T. & Creanza, N. A worldwide view of matriliny: using cross-cultural analyses to shed light on human kinship systems. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2018.0077 (2019).

  60. Dyble, M. et al. Sex equality can explain the unique social structure of hunter-gatherer bands. Science 348, 796–798 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Marlowe, F. W. Marital residence among foragers. Curr. Anthropol. 45, 277–283 (2004).

    Article  Google Scholar 

  62. Blurton Jones, N. G. Demography and Evolutionary Ecology of Hadza Hunter-Gatherers (Cambridge Univ. Press, 2016).

  63. Hill, K. R. et al. Co-residence patterns in hunter-gatherer societies show unique human social structure. Science 331, 1286–1289 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Stearns, S. The Evolution of Life Histories (Oxford Univ. Press, 1992).

  65. Brommer, J. E. The evolution of fitness in life-history theory. Biol. Rev. 75, 377–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-0938-7 (2019).

  67. Roper, M., Capdevila, P., Salguero-gómez, R. & Roper, M. Senescence: why and where selection gradients might not decline with age. Proc. R. Soc. B Biol. Sci. 288, 20210851 (2021).

    Article  Google Scholar 

  68. Gardner, A., West, S. A. & Wild, G. The genetical theory of kin selection. J. Evol. Biol. 24, 1020–1043 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Ronce, O., Rousset, F., Ronce, O., Gandon, S. & Gandon, S. Kin selection and natal dispersal in an age-structured population. Theor. Popul. Biol. 58, 143–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Taylor, P. D., Wild, G. & Gardner, A. Direct fitness or inclusive fitness: how shall we model kin selection? J. Evol. Biol. 20, 301–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Hawkes, K., O’Connell, J. F., Jones, N. G. B., Alvarez, H. & Charnov, E. L. Grandmothering, menopause, and the evolution of human life histories. Proc. Natl Acad. Sci. USA 95, 1336–1339 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bourke, A. F. G. Kin selection and the evolutionary theory of aging. Annu. Rev. Ecol. Evol. Syst. 38, 103–128 (2007).

    Article  Google Scholar 

  73. Vágási, C. I. et al. Is degree of sociality associated with reproductive senescence? A comparative analysis across birds and mammals. Philos. Trans. R. Soc. B. 376, 20190744 (2021).

    Article  Google Scholar 

  74. Lucas, E. R. & Keller, L. The co-evolution of longevity and social life. Funct. Ecol. 34, 76–87 (2020).

    Article  Google Scholar 

  75. Korb, J. & Heinze, J. Ageing and sociality: why, when and how does sociality change ageing patterns? Philos. Trans. R. Soc. B. 376, 20190727 (2021).

    Article  Google Scholar 

  76. Mcnamara, J. M., Houston, A. I. & Webb, J. N. Dynamic kin selection. Proc. R. Soc. B. 258, 23–28 (1994).

    Article  Google Scholar 

  77. Hasegawa, M. & Kutsukake, N. Kin selection and reproductive value in social mammals. J. Ethol. 37, 139–150 (2019).

    Article  Google Scholar 

  78. Brent, L. J. N. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. McComb, K. et al. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B Biol. Sci. 278, 3270–3276 (2011).

    Article  Google Scholar 

  80. Koenig, W. D. & Dickinson, J. L. Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior 379 (Cambridge Univ. Press, 2016).

  81. Creel, S. R. & Waser, P. M. in Cooperative Breeding in Mammals (eds. Solomon, N. & French, J. A.) 150–170 (Cambridge Univ. Press, 1997).

  82. Creel, S. R. & Creel, N. M. In The Wild Dog: Behavior, Ecology, and Conservation 224–243 (Princeton Univ. Press, 2002).

  83. Dierkes, P., Heg, D., Taborsky, M., Skubic, E. & Achmann, R. Genetic relatedness in groups is sex-specific and declines with age of helpers in a cooperatively breeding cichlid. Ecol. Lett. 8, 968–975 (2005).

    Article  PubMed  Google Scholar 

  84. Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).

  85. Dobson, F. S. Comeptition for mates and predominant juvenile male dispersal in mammals. Anim. Behav. 30, 1183–1192 (1983).

    Article  Google Scholar 

  86. Mabry, K. E., Shelley, E. L., Davis, K. E., Blumstein, D. T. & van Vuren, D. H. Social mating system and sex-biased dispersal in mammals and birds: a phylogenetic analysis. PLoS ONE 8, e57980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Isvaran, K. & Clutton-Brock, T. H. Ecological correlates of extra-group paternity in mammals. Proc. R. Soc. B. 274, 219–224 (2007).

    Article  PubMed  Google Scholar 

  88. Whitehead, H. Analyzing Animal Societies: Quantitative Methods for Vertebrate Social Analysis (Univ. Chicago Press, 2008).

  89. Kappeler, P. M. A framework for studying social complexity. Behav. Ecol. Sociobiol. 73, 13 (2019).

    Article  Google Scholar 

  90. Ellis, S. et al. Mixture models as a method for comparative sociality: social networks and demographic change in resident killer whales. Behav. Ecol. Sociobiol. 75, 75 (2021).

    Article  Google Scholar 

  91. Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1695 (2006).

  92. Sinnwell, J. P., Therneau, T. M. & Schaid, D. J. The kinship2 R package for pedigree data. Hum. Hered. 78, 91–93 (2014).

    Article  PubMed  Google Scholar 

  93. Harrell Jr., F. E. Hmisc: Harrell miscellaneous. R package v.3.0-12 (R Foundation for Statistical Computing, 2020).

  94. McElreath, R. rethinking: statistical rethinking book package (R Foundation for Statistical Computing, 2020).

  95. RStan: the R interface for Stan (Stan Development Team, 2020).

  96. Graw, B. & Manser, M. B. The function of mobbing in cooperative meerkats. Anim. Behav. 74, 507–517 (2007).

    Article  Google Scholar 

  97. Vitikainen, E. I. K. et al. Biased escorts: offspring sex, not relatedness explains alloparental care patterns in a cooperative breeder. Proc. R. Soc. B. 284, 20162384 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wright, B. M., Stredulinsky, E. H., Ellis, G. M. & Ford, J. K. B. Kin-directed food sharing promotes lifetime natal philopatry of both sexes in a population of fish-eating killer whales, Orcinus orca. Anim. Behav. 115, 81–95 (2016).

    Article  Google Scholar 

  99. Viblanc, V. A., Pasquaretta, C., Sueur, C., Boonstra, R. & Dobson, F. S. Aggression in Columbian ground squirrels: relationships with age, kinship, energy allocation, and fitness. Behav. Ecol. 27, arw098 (2016).

    Article  Google Scholar 

  100. Madden, J. R., Drewe, J. A., Pearce, G. P. & Clutton-Brock, T. H. The social network structure of a wild meerkat population: 3. position of individuals within networks. Behav. Ecol. Sociobiol. 65, 1857–1871 (2011).

    Article  Google Scholar 

  101. Rosati, A. G. et al. Social selectivity in aging wild chimpanzees. Science 370, 473–476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rathke, E. & Fischer, J. Social aging in male and female Barbary macaques. Am. J. Primatol. https://doi.org/10.1002/ajp.23272 (2021).

  103. Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).

    Article  Google Scholar 

  104. Hoogland, J. L. The Black-Tailed Praire Dog: Social Life of a Burrowing Mammal (Univ. Chicago Press, 1995).

  105. Wells, D. A. et al. Extra-group paternity varies with proxies of relatedness in a social mammal with high inbreeding risk. Behav. Ecol. 32, 94–104 (2021).

    Article  Google Scholar 

  106. Rusch, H. & Gavrilets, S. The logic of animal intergroup conflict: a review. J. Econ. Behav. Organ. 178, 1014–1030 (2020).

    Article  Google Scholar 

  107. Cassidy, K. A., Mech, L. D., MacNulty, D. R., Stahler, D. R. & Smith, D. W. Sexually dimorphic aggression indicates male gray wolves specialize in pack defense against conspecific groups. Behav. Process. 136, 64–72 (2017).

    Article  Google Scholar 

  108. Keesey, M. PhyloPic http://phylopic.org/ (2019).

Download references

Acknowledgements

This project was conceived and funded as part of a Natural Environment Research Council (NERC) standard grant (no. NE S010327/1) awarded to D.P.C., S.E., R.A.J., D.W.F. and M.A.C., which also supported M.N.W. S.E. also acknowledges funding from a Leverhulme Early Career Research Fellowship. We thank members of the Centre for Research in Animal Behaviour at the University of Exeter for useful discussion and comments. We also thank K. Holekamp, E. Strauss and M. Sawdy for their engagement and support of this project. This study constitutes an international collaboration combining theoretical work and long-term empirical data from seven research projects on free-ranging mammals. These decade-long field research projects were supported by funds from: National Environment Research Council (NERC) (Banded Mongoose Research Project), Max Planck Society, European Research Council (ERC) and Swiss National Foundation (Taï Chimpanzee Project), DEFRA and NERC (Woodchester Park Badger Project), NERC (Center for Whale Research), ERC, NCRR and Office Invoirien des Parcs et Réserves of NIH (Caribbean Primate Research Center), Leibniz-IZW, DFG, DAAD, Werner Dessauer Stiftung and Messerli Stiftung (Ngorongoro Hyena Project), National Science Federation, National Institutes of Health, Duke University, Princeton University and University of Notre Dame (Amboseli Baboon Project). We also thank the local authorities for permission to conduct long-term field research in: Uganda (Uganda Wildlife Authority and Uganda National Council for Science and Technology to the Banded Mongoose Research Project), Ivory Coast (MESRSCI, Ministère des Eaux et Forêts and OIPR to the Taï Chimpanzee Project), Canada and the United States (FOC, DFO to the Center for Whale Research), Tanzania (TAWIRI, COSTECH and Ngorongoro Conservation Area Authority to the Ngorongoro Hyena Project), Kenya (KWS, NACOSTI and National Environment Management Authority to Amboseli Baboon Project). Detailed acknowledgements associated with each project are listed in Supplementary Text 2.

Author information

Authors and Affiliations

Authors

Contributions

S.E., R.A.J., M.A.C., D.W.F., M.N.W. and D.P.C. conceived and designed the study programme. S.E. designed and implemented the analysis, made the figures and wrote the first draft of the manuscript with input from R.A.J., M.A.C., D.W.F., M.N.W. and D.P.C. R.A.J. designed and implemented the analytical model with M.A.C. and with input from S.E., D.W.F., M.N.W. and D.P.C. Data from long-term research projects were contributed, collected and managed by: M.A.C., M.M., H.J.N., F.J.T (banded mongoose data); C.C., L.V., R.M.W. (chimpanzee data); C.H.B., R.J.D., R.A.M. (European badger data); K.C.B., D.K.E., M.N.W. (killer whale data); L.J.N.B. (rhesus macaque data); E.D., O.P.H. (spotted hyena data) and S.C.A. (yellow baboon data). All authors contributed to later drafts of the manuscript and approved it for publication.

Corresponding author

Correspondence to Samuel Ellis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Mark Dyble and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–4, Tables 1–8, Figs. 1–6 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, S., Johnstone, R.A., Cant, M.A. et al. Patterns and consequences of age-linked change in local relatedness in animal societies. Nat Ecol Evol 6, 1766–1776 (2022). https://doi.org/10.1038/s41559-022-01872-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01872-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing