Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amorphous iron fluorosulfate as a high-capacity cathode utilizing combined intercalation and conversion reactions with unexpectedly high reversibility

Abstract

To achieve the desirable dual characteristics of high-capacity performance and low-cost production for the batteries of tomorrow, leveraging of multi-redox reactions of Earth-abundant transition metals in electrodes is fundamentally important. Here we identify an amorphous iron fluorosulfate electrode, a-LiFeSO4F, that can exploit both the intercalation and conversion reactions with a stable reversibility. The a-LiFeSO4F electrode delivers a capacity of 360 mAh g−1 with ~98.6% capacity retention after 200 cycles even at an elevated temperature (60 °C). In contrast to the conventional intercalation/conversion-type electrodes, the reversible cycle stability is attributed to the inherent amorphous structure of a-LiFeSO4F, whose structural integrity is not severely disturbed even after the conversion reaction, allowing its continuation as an intercalation host. We believe that this cycle stability of the intercalation/conversion reaction can be generally extended to various amorphous intercalation materials, offering new insights into the design of high-capacity electrodes through the exploitation of multi-mechanistic lithiation processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of a-LiFeSO4F.
Fig. 2: Redox activity of a-LiFeSO4F and polymorphs (tavorite and triplite).
Fig. 3: Ex situ analysis for investigation of mechanism.
Fig. 4: Electrochemical performance of a-LiFeSO4F.

Similar content being viewed by others

Data availability

All data generated and analysed in this study are available within the article and its Supplementary Information.

References

  1. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  2. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  Google Scholar 

  3. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  4. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).

    Article  Google Scholar 

  5. Barpanda, P. et al. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat. Mater. 10, 772–779 (2011).

    Article  Google Scholar 

  6. Recham, N. et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat. Mater. 9, 68–74 (2010).

    Article  Google Scholar 

  7. Nishimura, S.-i, Nakamura, M., Natsui, R. & Yamada, A. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. JACS 132, 13596–13597 (2010).

    Article  Google Scholar 

  8. Padhi, A., Nanjundaswamy, K., Masquelier, C., Okada, S. & Goodenough, J. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997).

    Article  Google Scholar 

  9. Melot, B. C. & Tarascon, J.-M. Design and preparation of materials for advanced electrochemical storage. Acc. Chem. Res. 46, 1226–1238 (2013).

    Article  Google Scholar 

  10. Wu, F. & Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10, 435–459 (2017).

    Article  Google Scholar 

  11. Cabana, J., Monconduit, L., Larcher, D. & Palacin, M. R. Beyond intercalation‐based Li‐ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).

    Article  Google Scholar 

  12. Yu, S.-H., Feng, X., Zhang, N., Seok, J. & Abruña, H. D. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc. Chem. Res. 51, 273–281 (2018).

    Article  Google Scholar 

  13. Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    Article  Google Scholar 

  14. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  Google Scholar 

  15. Shimoda, K., Shikano, M., Murakami, M. & Sakaebe, H. Capacity fading mechanism of conversion-type FeF3 electrode: investigation by electrochemical operando nuclear magnetic resonance spectroscopy. J. Power Sources 477, 228772 (2020).

    Article  Google Scholar 

  16. Li, L. et al. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. JACS 138, 2838–2848 (2016).

    Article  Google Scholar 

  17. Pender, J. P. et al. Electrode degradation in lithium-ion batteries. ACS Nano 14, 1243–1295 (2020).

    Article  Google Scholar 

  18. Yu, S. H., Lee, S. H., Lee, D. J., Sung, Y. E. & Hyeon, T. Conversion reaction‐based oxide nanomaterials for lithium ion battery anodes. Small 12, 2146–2172 (2016).

    Article  Google Scholar 

  19. Yu, L. et al. Investigation on the overlithiation mechanism of LiCoO2 cathode for lithium ion batteries. J. Electrochem. Soc. 168, 050516 (2021).

    Article  Google Scholar 

  20. Weker, J. N., Wise, A. M., Lim, K., Shyam, B. & Toney, M. F. Operando spectroscopic microscopy of LiCoO2 cathodes outside standard operating potentials. Electrochim. Acta 247, 977–982 (2017).

    Article  Google Scholar 

  21. Usubelli, C. et al. Understanding the overlithiation properties of LiNi0.6Mn0.2Co0.2O2 using electrochemistry and depth-resolved X-ray absorption spectroscopy. J. Electrochem. Soc. 167, 080514 (2020).

    Article  Google Scholar 

  22. Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878 (2004).

    Article  Google Scholar 

  23. Badway, F., Cosandey, F., Pereira, N. & Amatucci, G. G. Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318 (2003).

    Article  Google Scholar 

  24. Pereira, N., Badway, F., Wartelsky, M., Gunn, S. & Amatucci, G. G. Iron oxyfluorides as high capacity cathode materials for lithium batteries. J. Electrochem. Soc. 156, A407 (2009).

    Article  Google Scholar 

  25. Wu, F. et al. 3D honeycomb architecture enables a high-rate and long-life Iron (III) fluoride-lithium battery. Adv. Mater. 31, e1905146 (2019).

    Article  Google Scholar 

  26. Hua, X. et al. Revisiting metal fluorides as lithium-ion battery cathodes. Nat. Mater. 20, 841 (2021).

    Article  Google Scholar 

  27. Ju, L. et al. Significantly improved cyclability of conversion‐type transition metal oxyfluoride cathodes by homologous passivation layer reconstruction. Adv. Energy Mater. 10, 1903333 (2020).

    Article  Google Scholar 

  28. Jung, S.-K. et al. New iron-based intercalation host for lithium-ion batteries. Chem. Mater. 30, 1956–1964 (2018).

    Article  Google Scholar 

  29. Nakai, S. et al. Core-exciton absorption in the F K absorption spectra of 3d transition-metal fluorides. Phys. Rev. B 37, 10895 (1988).

    Article  Google Scholar 

  30. Vinogradov, A. et al. Low-lying unoccupied electronic states in 3d transition-metal fluorides probed by NEXAFS at the F 1s threshold. Phys. Rev. B 71, 045127 (2005).

    Article  Google Scholar 

  31. Jung, S.-K. et al. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nat. Energy 2, 16208 (2017).

    Article  Google Scholar 

  32. Kitajou, A., Momida, H., Yamashita, T., Oguchi, T. & Okada, S. Amorphous xNaF–FeSO4 systems (1 ≤ x ≤ 2) with excellent cathode properties for sodium-ion batteries. ACS Appl. Energy Mater. 2, 5968–5974 (2019).

    Article  Google Scholar 

  33. Wang, F. et al. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nat. Commun. 6, 6668 (2015).

    Article  Google Scholar 

  34. Grochala, W. et al. Crystal and electronic structure, lattice dynamics and thermal properties of Ag(I)(SO3)R (R = F, CF3) Lewis acids in the solid state. Dalton Trans. 41, 2034–2047 (2012).

    Article  Google Scholar 

  35. Badway, F., Cosandey, F., Pereira, N. & Amatucci, G. Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318 (2003).

    Article  Google Scholar 

  36. Hua, X. et al. Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery. J. Phys. Chem. C. 118, 15169–15184 (2014).

    Article  Google Scholar 

  37. Huang, Q. et al. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 18, 1343–1349 (2019).

    Article  Google Scholar 

  38. Huang, Q. et al. Insights into the effects of electrolyte composition on the performance and stability of FeF2 conversion‐type cathodes. Adv. Energy Mater. 9, 1803323 (2019).

    Article  Google Scholar 

  39. Lin, C.-F. et al. Highly reversible conversion-type FeOF composite electrode with extended lithium insertion by atomic layer deposition LiPON protection. Chem. Mater. 29, 8780–8791 (2017).

    Article  Google Scholar 

  40. Xiao, A. W. et al. Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes. Nat. Mater. 19, 644–654 (2020).

    Article  Google Scholar 

  41. Wiaderek, K. M. et al. Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR spectroscopy. JACS 135, 4070–4078 (2013).

    Article  Google Scholar 

  42. Ma, F.-F. et al. Structure of triplite LiFeSO4F powder synthesized through an ambient two-step solid-state route. Powder Diffr. 33, 38–43 (2018).

    Article  Google Scholar 

  43. Ati, M. et al. Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure. Electrochem. Commun. 13, 1280–1283 (2011).

    Article  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  45. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  46. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  47. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  Google Scholar 

  48. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

This work was mainly supported by the Samsung Research Funding Centre of Samsung Electronics under project number SRFC-TA1403-53. D.E. acknowledges supports from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A13039400).

Author information

Authors and Affiliations

Authors

Contributions

J.H., S.-K.J., I.H. and K.K. conceived and designed the experiments. J.H. prepared samples and carried out the main experiments. S.-P.C. conducted TEM analysis. J.H., D.E., H.P. and T.H. discussed the SXAS results. D.E., T.H. and K.-H.K. assisted with sample preparation. J.-H.S., S.Y. and K.O. carried out density functional theory calculation. J.H. and K.-H.K. discussed the XRD results. J.H., S.-K.J. and K.K. wrote the paper. D.E., S.-K.J., G.K. and K.K. revised or commented on the manuscript.

Corresponding author

Correspondence to Kisuk Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Tables 1–2 and Figures 1–16.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J., Jung, SK., Hwang, I. et al. Amorphous iron fluorosulfate as a high-capacity cathode utilizing combined intercalation and conversion reactions with unexpectedly high reversibility. Nat Energy 8, 30–39 (2023). https://doi.org/10.1038/s41560-022-01148-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01148-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing