Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mineral-catalysed formation of marine NO and N2O on the anoxic early Earth

Abstract

Microbial denitrification converts fixed nitrogen species into gases in extant oceans. However, it is unclear how such transformations occurred within the early nitrogen cycle of the Archaean. Here we demonstrate under simulated Archaean conditions mineral-catalysed reduction of nitrite via green rust and magnetite to reach enzymatic conversion rates. We find that in an Fe2+-rich marine environment, Fe minerals could have mediated the formation of nitric oxide (NO) and nitrous oxide (N2O). Nitrate did not exhibit reactivity in the presence of either mineral or aqueous Fe2+; however, both minerals induced rapid nitrite reduction to NO and N2O. While N2O escaped into the gas phase (63% of nitrite nitrogen, with green rust as the catalyst), NO remained associated with precipitates (7%), serving as a potential shuttle to the benthic ocean. Diffusion and photochemical modelling suggest that marine N2O emissions would have sustained 0.8–6.0 parts per billion of atmospheric N2O without a protective ozone layer. Our findings imply a globally distributed abiotic denitrification process that feasibly aided early microbial life to accrue new capabilities, such as respiratory metabolisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular NOx consumption and associated NO and N2O production with Fe minerals or aqueous Fe2+.
Fig. 2: Solid-phase ratios of reduced and oxidized Fe in green rust and magnetite.
Fig. 3: Atmospheric N2O under the influence of mineral-catalysed N2O production in the Archaean ocean.
Fig. 4: Affinity landscapes.
Fig. 5: Schematic of mineral-catalysed NO and N2O formation at the junction of the early nitrogen and iron cycle.

Similar content being viewed by others

Data availability

All of the data relating to this manuscript are provided within the manuscript and its Supplementary Information and are available as raw data on the Figshare platform (https://doi.org/10.6084/m9.figshare.20740204.v3) or upon request from the corresponding author.

Code availability

The code for the photochemical model will be shared by the corresponding author upon request.

References

  1. Mancinelli, R. L. & McKay, C. P. The evolution of nitrogen cycling. Orig. Life Evol. Biosph. 18, 311–325 (1988).

    Article  Google Scholar 

  2. Wong, M. L., Charnay, B. D., Gao, P., Yung, Y. L. & Russell, M. J. Nitrogen oxides in early Earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology 17, 975–983 (2017).

    Article  Google Scholar 

  3. Summers, D. P. & Khare, B. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate. Astrobiology 7, 333–341 (2007).

    Article  Google Scholar 

  4. Ranjan, S., Todd, Z. R., Rimmer, P. B., Sasselov, D. D. & Babbin, A. R. Nitrogen oxide concentrations in natural waters on early Earth. Geochem. Geophys. Geosystems 20, 2021–2039 (2019).

    Article  Google Scholar 

  5. Kampschreur, M. J., Kleerebezem, R., de Vet, W. W. J. M. & Loosdrecht, M. C. M. V. Reduced iron induced nitric oxide and nitrous oxide emission. Water Res. 45, 5945–5952 (2011).

    Article  Google Scholar 

  6. Jones, L. C., Peters, B., Pacheco, J. S. L., Casciotti, K. L. & Fendorf, S. Stable isotopes and iron oxide mineral products as markers of chemodenitrification. Environ. Sci. Technol. 49, 3444–3452 (2015).

    Article  Google Scholar 

  7. Grabb, K. C., Buchwald, C., Hansel, C. M. & Wankel, S. D. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(ii) and its production of nitrous oxide. Geochim. Cosmochim. Acta 196, 388–402 (2017).

    Article  Google Scholar 

  8. Kasting, J. F. in Earth’s Early Atmosphere and Surface Environment 19–28 (Geological Society of America, 2014).

  9. Gough, D. O. in Physics of Solar Variations 21–34 (Springer Dordrecht, 1981).

  10. Stanton, C. L. et al. Nitrous oxide from chemodenitrification: a possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration. Geobiology 16, 597–609 (2018).

    Article  Google Scholar 

  11. Buick, R. Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology 5, 97–100 (2007).

    Article  Google Scholar 

  12. Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2, 725–729 (2009).

    Article  Google Scholar 

  13. Roberson, A. L., Roadt, J., Halevy, I. & Kasting, J. F. Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon. Geobiology 9, 313–320 (2011).

    Article  Google Scholar 

  14. Li, Y., Yamaguchi, A., Yamamoto, M., Takai, K. & Nakamura, R. Molybdenum sulfide: a bioinspired electrocatalyst for dissimilatory ammonia synthesis with geoelectrical current. J. Phys. Chem. C 121, 2154–2164 (2017).

    Article  Google Scholar 

  15. Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10, 135–139 (2017).

    Article  Google Scholar 

  16. Sorensen, J. & Thorling, L. Stimulation by lepidocrocite (7-FeOOH) of Fe(ii)-dependent nitrite reduction. Geochim. Cosmochim. Acta 55, 1289–1294 (1991).

    Article  Google Scholar 

  17. Hansen, H., Borggaard, O. K. & Sorensen, J. Evaluation of the free energy of formation of Fe(ii)–Fe(iii) hydroxide-sulphate (green rust) and its reduction of nitrite. Geochim. Cosmochim. Acta 58, 2599–2608 (1994).

    Article  Google Scholar 

  18. Ottley, C. J., Davison, W. & Edmunds, W. M. Chemical catalysis of nitrate reduction by iron (ii). Geochim. Cosmochim. Acta 61, 1819–1828 (1997).

    Article  Google Scholar 

  19. Zegeye, A. et al. Green rust formation controls nutrient availability in a ferruginous water column. Geology 40, 599–602 (2012).

    Article  Google Scholar 

  20. Babbin, A. R., Bianchi, D., Jayakumar, A. & Ward, B. B. Rapid nitrous oxide cycling in the suboxic ocean. Science 348, 1127–1129 (2015).

    Article  Google Scholar 

  21. Ji, Q., Babbin, A. R., Jayakumar, A., Oleynik, S. & Ward, B. B. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone. Geophys. Res. Lett. 42, 10755–10764 (2015).

    Article  Google Scholar 

  22. Gordon, A. D. et al. Reduction of nitrite and nitrate on nano-dimensioned FeS. Orig. Life Evol. Biosph. 43, 305–322 (2013).

    Article  Google Scholar 

  23. Llirós, M. et al. Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Sci. Rep. 5, 13803 (2015).

    Article  Google Scholar 

  24. Swanner, E. D. et al. Modulation of oxygen production in Archaean oceans by episodes of Fe(ii) toxicity. Nat. Geosci. 8, 126–130 (2015).

    Article  Google Scholar 

  25. Sumner, D. Y. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa. Am. J. Sci. 297, 455–487 (1997).

    Article  Google Scholar 

  26. Sumner, D. Y. & Grotzinger, J. P. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology 24, 119–122 (1996).

    Article  Google Scholar 

  27. Battaglia, G. & Joos, F. Marine N2O emissions from nitrification and denitrification constrained by modern observations and projected in multimillennial global warming simulations. Glob. Biogeochem. Cycles 32, 92–121 (2018).

    Article  Google Scholar 

  28. Hu, R., Seager, S. & Bains, W. Photochemistry in terrestrial exoplanet atmospheres. I. Photochemistry model and benchmark cases. Astrophys J. 761, 166 (2012).

    Article  Google Scholar 

  29. Kaiser, J., Röckmann, T., Brenninkmeijer, C. A. M. & Crutzen, P. J. Wavelength dependence of isotope fractionation in N2O photolysis. Atmos. Chem. Phys. 3, 303–313 (2003).

    Article  Google Scholar 

  30. Airapetian, V. S., Glocer, A., Gronoff, G., Hebrard, G. & Danchi, W. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 9, 452–455 (2016).

    Article  Google Scholar 

  31. Wolf, E. T. & Toon, O. B. Fractal organic hazes provided an ultraviolet shield for early Earth. Science 328, 1266–1268 (2010).

    Article  Google Scholar 

  32. Catling, D. C., Zahnle, K. J. & McKay, C. P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).

    Article  Google Scholar 

  33. Laneuville, M., Kameya, M. & Cleaves, H. J. Earth without life: a systems model of a global abiotic nitrogen cycle. Astrobiology 18, 897–914 (2018).

    Article  Google Scholar 

  34. Hu, R. & Diaz, H. D. Stability of nitrogen in planetary atmospheres in contact with liquid water. Astrophys J. 886, 126 (2019).

    Article  Google Scholar 

  35. Saito, M. A. et al. Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean. Nat. Geosci. 13, 355–362 (2020).

    Article  Google Scholar 

  36. Summers, D. P. & Chang, S. Prebiotic ammonia from reduction of nitrite by iron (ii) on the early Earth. Nature 365, 630–633 (1993).

    Article  Google Scholar 

  37. Brandes, J. A. et al. Abiotic nitrogen reduction on the early Earth. Nature 395, 365–367 (1998).

    Article  Google Scholar 

  38. Nishizawa, M. et al. Stable abiotic production of ammonia from nitrate in komatiite-hosted hydrothermal systems in the Hadean and Archean oceans. Minerals 11, 321 (2021).

    Article  Google Scholar 

  39. Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069–1071 (2017).

    Article  Google Scholar 

  40. Harman, C. E. et al. Abiotic O2 levels on planets around F, G, K, and M stars: effects of lightning-produced catalysts in eliminating oxygen false positives. Astrophys J. 866, 56 (2018).

    Article  Google Scholar 

  41. Mather, T. A., Pyle, D. M. & Allen, A. G. Volcanic source for fixed nitrogen in the early Earth’s atmosphere. Geology 32, 905–908 (2004).

    Article  Google Scholar 

  42. Kasting, J. F. Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Orig. Life Evol. Biosph. 20, 199–231 (1990).

    Article  Google Scholar 

  43. Ducluzeau, A.-L. et al. Was nitric oxide the first deep electron sink? Trends Biochem. Sci. 34, 9–15 (2009).

    Article  Google Scholar 

  44. Viebrock, A. & Zumft, W. G. Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J. Bacteriol. 170, 4658–4668 (1988).

    Article  Google Scholar 

  45. Chen, J. & Strous, M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim. Biophys. Acta Bioenerg. 1827, 136–144 (2013).

    Article  Google Scholar 

  46. Suharti, S. & de Vries, S. Membrane-bound denitrification in the Gram-positive bacterium Bacillus azotoformans. Biochem. Soc. Trans. 33, 130–133 (2005).

    Article  Google Scholar 

  47. Saraste, M. & Castresana, J. Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett. 341, 1–4 (1994).

    Article  Google Scholar 

  48. Sousa, F. L. et al. The superfamily of heme–copper oxygen reductases: types and evolutionary considerations. Biochim. Biophys. Acta Bioenerg. 1817, 629–637 (2012).

    Article  Google Scholar 

  49. Yoon, S. et al. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ. Appl. Environ. Microbiol. 82, 3793–3800 (2016).

    Article  Google Scholar 

  50. Heinrich, T. A. et al. Biological nitric oxide signalling: chemistry and terminology. Br. J. Pharmacol. 169, 1417–1429 (2013).

    Article  Google Scholar 

  51. Santana, M. M., Gonzalez, J. M. & Cruz, C. Nitric oxide accumulation: the evolutionary trigger for phytopathogenesis. Front. Microbiol. 8, 1947 (2017).

    Article  Google Scholar 

  52. Nikeleit, V. et al. Inhibition of photoferrotrophy by nitric oxide in ferruginous environments. Preprint at EarthArXiv https://doi.org/10.31223/X5XS60 (2021).

  53. Drummond, J. T. & Matthews, R. G. Nitrous oxide degradation by cobalamin-dependent methionine synthase: characterization of the reactants and products in the inactivation reaction. Biochemistry 33, 3732–3741 (1994).

    Article  Google Scholar 

  54. Drummond, J. T. & Matthews, R. G. Nitrous oxide inactivation of cobalamin-dependent methionine synthase from Escherichia coli: characterization of the damage to the enzyme and prosthetic group. Biochemistry 33, 3742–3750 (1994).

    Article  Google Scholar 

  55. Matthews, R. G. Cobalamin-dependent methyltransferases. Acc. Chem. Res. 34, 681–689 (2001).

    Article  Google Scholar 

  56. Buessecker, S. et al. Microbial communities and interactions of nitrogen oxides with methanogenesis in diverse peatlands of the Amazon basin. Front. Microbiol. 12, 659079 (2021).

    Article  Google Scholar 

  57. McDonnell, A. M. P. & Buesseler, K. O. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55, 2085–2096 (2010).

    Article  Google Scholar 

  58. Krissansen-Totton, J., Olson, S. & Catling, D. C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4, eaao5747 (2018).

    Article  Google Scholar 

  59. Nicholls, J. C., Davies, C. A. & Trimmer, M. High‐resolution profiles and nitrogen isotope tracing reveal a dominant source of nitrous oxide and multiple pathways of nitrogen gas formation in the central Arabian Sea. Limnol. Oceanogr. 52, 156–168 (2007).

    Article  Google Scholar 

  60. Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57, 1331–1346 (2012).

    Article  Google Scholar 

  61. Löscher, C. R. et al. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 9, 2419–2429 (2012).

    Article  Google Scholar 

  62. Bourbonnais, A. et al. N2O production and consumption from stable isotopic and concentration data in the Peruvian coastal upwelling system. Glob. Biogeochem. Cycles 31, 678–698 (2017).

    Article  Google Scholar 

  63. Frame, C. H. & Casciotti, K. L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 7, 2695–2709 (2010).

    Article  Google Scholar 

  64. Zafiriou, O. C. & McFarland, M. Nitric oxide from nitrite photolysis in the central equatorial Pacific. J. Geophys. Res. Atmos. 86, 3173–3182 (1981).

    Article  Google Scholar 

  65. Liu, C.-Y. et al. Determination of dissolved nitric oxide in coastal waters of the Yellow Sea off Qingdao. Ocean Sci. 13, 623–632 (2017).

    Article  Google Scholar 

  66. Martens-Habbena, W. et al. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ. Microbiol. 17, 2261–2274 (2015).

    Article  Google Scholar 

  67. Li, Y.-L., Konhauser, K. O. & Zhai, M. The formation of primary magnetite in the early Archean oceans. Earth Planet. Sci. Lett. 466, 103–114 (2017).

    Article  Google Scholar 

  68. Byrne, J. M. et al. Redox cycling of Fe(ii) and Fe(iii) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015).

    Article  Google Scholar 

  69. Pearce, C. I. et al. Synthesis and properties of titanomagnetite (Fe3–xTixO4) nanoparticles: a tunable solid-state Fe(ii/iii) redox system. J. Colloid Interface Sci. 387, 24–38 (2012).

    Article  Google Scholar 

  70. Williams, A. G. B. & Scherer, M. M. Kinetics of Cr(vi) reduction by carbonate green rust. Environ. Sci. Technol. 35, 3488–3494 (2001).

    Article  Google Scholar 

  71. Sun, Z.-X., Su, F.-W., Forsling, W. & Samskog, P.-O. Surface characteristics of magnetite in aqueous suspension. J. Colloid Interface Sci. 197, 151–159 (1998).

    Article  Google Scholar 

  72. Anbar, A. D. & Holland, H. D. The photochemistry of manganese and the origin of banded iron formations. Geochim. Cosmochim. Acta 56, 2595–2603 (1992).

    Article  Google Scholar 

  73. Miranda, K. M., Espey, M. G. & Wink, D. A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5, 62–71 (2001).

    Article  Google Scholar 

  74. Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, 68–72 (1988).

    Article  Google Scholar 

  75. Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

    Article  Google Scholar 

  76. Hu, R., Seager, S. & Bains, W. Photochemistry in terrestrial exoplanet atmospheres. II. H2S and SO2 photochemistry in anoxic atmospheres. Astrophys. J. 769, 6 (2013).

    Article  Google Scholar 

  77. Hu, R. Atmospheric photochemistry, surface features, and potential biosignature gases of terrestrial exoplanets. PhD thesis, Massachusetts Institute of Technology (2013).

  78. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    Article  Google Scholar 

  79. Claire, M. W. et al. The evolution of solar flux from 0.1 nm to 160 μm: quantitative estimates for planetary studies. Astrophys. J. 757, 95 (2012).

    Article  Google Scholar 

  80. Ranjan, S. et al. Photochemistry of anoxic abiotic habitable planet atmospheres: impact of new H2O cross sections. Astrophys. J. 896, 148 (2020).

    Article  Google Scholar 

  81. Massie, S. T. & Hunten, D. M. Stratospheric eddy diffusion coefficients from tracer data. J. Geophys. Res. Atmos. 86, 9859–9868 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Kirven-Brooks and C. P. McKay for support during the initial experimental phase at the NASA Ames Research Center. We are grateful to K. Weiss, S. Phrasavath, E. Soignard and A. Smith for help with the mineral analytics. We also thank J. G. Lopez for discussions on the diffusion modelling and A. D. Anbar, C. M. Ostrander, J. B. Glass, A. Kappler, M. J. Russell and S. Yoon for feedback on the manuscript. H.C.-Q. and S.B. were supported by the National Aeronautics and Space Administration’s (NASA’s) Nexus for Exoplanet System Science (NExSS) research coordination network at Arizona State University led by S. J. Desch (NNX-15AD53G) and sponsored by NASA’s Science Mission Directorate. S.B. and H.I. received critical funding through the NASA Astrobiology Institute (NAI) Early Career Collaboration Award. H.I. also received funding for this work from the NASA Exoplanets Research Program and NExSS grant NNX-15AQ73G. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA (80NM0018D0004). R.H. was supported in part by NASA’s Exoplanets Research Program grant 80NM0018F0612. S.J.R. acknowledges support from NASA Exobiology (award 80NSSC19K0474) and the National Science Foundation Sedimentary Geology and Paleobiology Program (award 1733598).

Author information

Authors and Affiliations

Authors

Contributions

S.B., H.I. and H.C.-Q. developed overall study objectives and the experimental design. S.B. performed the experiments. S.B., T.E. and S.J.R. conducted the thermodynamics and diffusion modelling. R.H. created the photochemical model. S.B. and H.C.-Q. drafted the manuscript. All authors participated in final revisions of the paper.

Corresponding author

Correspondence to Steffen Buessecker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Manabu Nishizawa, Sarah Rugheimer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–8, Tables 1–5 and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buessecker, S., Imanaka, H., Ely, T. et al. Mineral-catalysed formation of marine NO and N2O on the anoxic early Earth. Nat. Geosci. 15, 1056–1063 (2022). https://doi.org/10.1038/s41561-022-01089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01089-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing