Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of the antiferromagnetic spin Hall effect

Abstract

The discovery of the spin Hall effect1 enabled the efficient generation and manipulation of the spin current. More recently, the magnetic spin Hall effect2,3 was observed in non-collinear antiferromagnets, where the spin conservation is broken due to the non-collinear spin configuration. This provides a unique opportunity to control the spin current and relevant device performance with controllable magnetization. Here, we report a magnetic spin Hall effect in a collinear antiferromagnet, Mn2Au. The spin currents are generated at two spin sublattices with broken spatial symmetry, and the antiparallel antiferromagnetic moments play an important role. Therefore, we term this effect the ‘antiferromagnetic spin Hall effect’. The out-of-plane spins from the antiferromagnetic spin Hall effect are favourable for the efficient switching of perpendicular magnetized devices, which is required for high-density applications. The antiferromagnetic spin Hall effect adds another twist to the atomic-level control of spin currents via the antiferromagnetic spin structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of σz via the AFM-SHE.
Fig. 2: Characterization of σz and its electrical control by ST-FMR signals.
Fig. 3: Deterministic field-free switching in Mn2Au/ferromagnet stacks.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Any other data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  CAS  Google Scholar 

  2. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article  CAS  Google Scholar 

  3. Nan, T. X. et al. Controlling spin current polarization through non-collinear antiferromagnetism. Nat. Commun. 11, 4671 (2020).

    Article  CAS  Google Scholar 

  4. Baek, S. C. et al. Spin currents and spin-orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    Article  CAS  Google Scholar 

  5. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  6. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  7. Kurebayashi, H. et al. An antidamping spin-orbit torque originating from the Berry curvature. Nat. Nanotechnol. 9, 211–217 (2014).

    Article  CAS  Google Scholar 

  8. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  CAS  Google Scholar 

  9. Chen, X. Z. et al. Electric field control of Néel spin-orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).

    Article  CAS  Google Scholar 

  10. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  CAS  Google Scholar 

  11. MacNeill, D. et al. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Article  CAS  Google Scholar 

  12. Song, P. et al. Coexistence of large conventional and planar spin Hall effect with long spin diffusion length in a low-symmetry semimetal at room temperature. Nat. Mater. 19, 292–298 (2020).

    Article  CAS  Google Scholar 

  13. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  Google Scholar 

  14. Zhang, W. et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).

    Article  Google Scholar 

  15. Oh, Y. W. et al. Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878 (2016).

    Article  CAS  Google Scholar 

  16. Liu, Y. et al. Current-induced out-of-plane spin accumulation on the (001) surface of the IrMn3 antiferromagnet. Phys. Rev. Appl 12, 064046 (2019).

    Article  CAS  Google Scholar 

  17. Fukami, S. et al. Magnetization switching by spin-orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    Article  CAS  Google Scholar 

  18. Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    Article  Google Scholar 

  19. Z˘elezný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article  Google Scholar 

  20. González-Hernández, R. et al. Magnetic spin Hall effect in collinear antiferromagnet. Preprint at https://arxiv.org/abs/2002.07073 (2020).

  21. Bodnar, Y. S. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    Article  Google Scholar 

  22. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  CAS  Google Scholar 

  23. Zhang, Y., Liu, Q., Miao, B. F., Ding, H. F. & Wang, X. R. Anatomy of electrical signals and dc-voltage line shape in spin-torque ferromagnetic resonance. Phys. Rev. B 99, 064424 (2019).

    Article  CAS  Google Scholar 

  24. Liu, L., Moriyama, T., Ralph, D. & Buhrman, R. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  25. Bodnar, Y. S. et al. Imaging of current induced Néel vector switching in antiferromagnetic Mn2Au. Phys. Rev. B 99, 140409 (2019).

    Article  CAS  Google Scholar 

  26. Fukami, S. et al. A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotechnol. 11, 621–625 (2016).

    Article  CAS  Google Scholar 

  27. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    Article  CAS  Google Scholar 

  28. Saglam, H. et al. Independence of spin-orbit torques from the exchange bias direction in Ni81Fe19/IrMn bilayers. Phys. Rev. B 98, 094407 (2018).

    Article  CAS  Google Scholar 

  29. Holanda, J. et al. Magnetic damping modulation in IrMn3/Ni80Fe20 via the magnetic spin Hall effect. Phys. Rev. Lett. 124, 087204 (2020).

    Article  CAS  Google Scholar 

  30. Zhou, X. F. et al. From fieldlike torque to antidamping torque in antiferromagnetic Mn2Au. Phys. Rev. Appl 11, 054030 (2019).

    Article  CAS  Google Scholar 

  31. Wang, Y. et al. Room temperature magnetization switching in topological insulator–ferromagnet heterostructures by spin-orbit torques. Nat. Commun. 8, 1364 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for fruitful discussions with J. Yin, D. Weiss, J. Han, K. Cai, P. He, S. D. Pollard and R. Mishra. This work is supported by the National Key R&D Program of China (grant no. 2017YFB0405704), National Natural Science Foundation of China (grant no. 51871130), Natural Science Foundation of Beijing Municipality (grant no. JQ20010) and National Key R&D Program of China (grants no. 2016YFA0203800 and 2017YFB0405604). X.R.W. is supported by Hong Kong RGC (grants no. 16301518 and 16301619).

Author information

Authors and Affiliations

Authors

Contributions

C.S. and X.C. designed the experiment. X.C., X.Z. and H.B. grew the thin films. X.C. and G.S. fabricated the devices. X.C., S.S., G.S., H.B. and H.Z. carried out the ST-FMR and MOKE measurements. X.C., X.Z. S.J., Y.Z. and Z.Z. performed the high magnetic field measurements. A.L., Y.C. and X.H. performed the structural characterizations. X.C., L.L., C.S., X.W., X.F. and D.X. proposed the theoretical model. H.W., H.Y. and F.P. gave suggestions on the experiments. C.S., H.Y. and F.P. supervised this study. All authors discussed the results and prepared the manuscript.

Corresponding authors

Correspondence to Cheng Song, Hyunsoo Yang or Feng Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Byong-Guk Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Table 1, Notes 1–13 and references.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Shi, S., Shi, G. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021). https://doi.org/10.1038/s41563-021-00946-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00946-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing