Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tandem catalysis with double-shelled hollow spheres

Abstract

Metal–zeolite composites with metal (oxide) and acid sites are promising catalysts for integrating multiple reactions in tandem to produce a wide variety of wanted products without separating or purifying the intermediates. However, the conventional design of such materials often leads to uncontrolled and non-ideal spatial distributions of the metal inside/on the zeolites, limiting their catalytic performance. Here we demonstrate a simple strategy for synthesizing double-shelled, contiguous metal oxide@zeolite hollow spheres (denoted as MO@ZEO DSHSs) with controllable structural parameters and chemical compositions. This involves the self-assembly of zeolite nanocrystals onto the surface of metal ion-containing carbon spheres followed by calcination and zeolite growth steps. The step-by-step formation mechanism of the material is revealed using mainly in situ Raman spectroscopy and X-ray diffraction and ex situ electron microscopy. We demonstrate that it is due to this structure that an Fe2O3@H-ZSM-5 DSHSs-showcase catalyst exhibits superior performance compared with various conventionally structured Fe2O3-H-ZSM-5 catalysts in gasoline production by the Fischer–Tropsch synthesis. This work is expected to advance the rational synthesis and research of hierarchically hollow, core–shell, multifunctional catalyst materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of MO@ZEO DSHSs.
Fig. 2: Phase variation during synthesis of Fe2O3@S-1 DSHSs.
Fig. 3: Monitoring of the transformation from an Fe3+-CS@S-1 colloid to a hollow Fe2O3 sphere@S-1 colloid during calcination in air.
Fig. 4: Manipulation of structural parameters and chemical compositions in MO@ZEO DSHSs.
Fig. 5: Catalytic performances of different catalyst materials in syngas conversion.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files. Source data are provided with this paper.

References

  1. Yang, P. & Tarascon, J.-M. Towards systems materials engineering. Nat. Mater. 11, 560–563 (2012).

    Article  CAS  Google Scholar 

  2. Zhu, Y. et al. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 30, 1706347 (2018).

    Article  Google Scholar 

  3. Parlett, C. M. A. et al. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions. Nat. Mater. 15, 178–182 (2016).

    Article  CAS  Google Scholar 

  4. Isaacs, M. A. et al. A spatially orthogonal hierarchically porous acid-base catalyst for cascade and antagonistic reactions. Nat. Catal. 3, 921–931 (2020).

    Article  CAS  Google Scholar 

  5. Cho, H. J., Kim, D., Li, J., Su, D. & Xu, B. Zeolite-encapsulated Pt nanoparticles for tandem catalysis. J. Am. Chem. Soc. 140, 13514–13520 (2018).

    Article  CAS  Google Scholar 

  6. Cheng, K. et al. Impact of the spatial organization of bifunctional metal-zeolite catalysts for hydroisomerization of light alkanes. Angew. Chem. Int. Ed. 59, 3592–3600 (2020).

    Article  CAS  Google Scholar 

  7. Climent, M. J., Corma, A., Iborra, S. & Sabater, M. J. Heterogeneous catalysis for tandem reactions. ACS Catal. 4, 870–891 (2014).

    Article  CAS  Google Scholar 

  8. Behr, A., Vorholt, A. J., Ostrowski, K. A. & Seidensticker, T. Towards resource efficient chemistry: tandem reactions with renewables. Green Chem. 16, 982–1006 (2014).

    Article  CAS  Google Scholar 

  9. Lohr, T. L. & Marks, T. J. Orthogonal tandem catalysis. Nat. Chem. 7, 477–482 (2015).

    Article  CAS  Google Scholar 

  10. Védrine, J. C. Metal oxides in heterogeneous oxidation catalysis: state of the art and challenges for a more sustainable world. ChemSusChem 12, 577–588 (2019).

    Article  Google Scholar 

  11. De Jong, K. P. in Synthesis of Solid Catalysts (ed. De Jong, K. P.) 3–12 (Wiley-VCH, 2009).

  12. Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    Article  CAS  Google Scholar 

  13. Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    Article  CAS  Google Scholar 

  14. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2420 (1997).

    Article  CAS  Google Scholar 

  15. Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

    Article  CAS  Google Scholar 

  16. Li, Y., Li, L. & Yu, J. Applications of zeolites in sustainable chemistry. Chem 3, 928–949 (2017).

    Article  CAS  Google Scholar 

  17. Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    Article  CAS  Google Scholar 

  18. Cheng, K. et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem 3, 334–347 (2017).

    Article  CAS  Google Scholar 

  19. Gao, P. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9, 1019–1024 (2017).

    Article  CAS  Google Scholar 

  20. Wang, Y. et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics. ACS Catal. 9, 895–901 (2019).

    Article  CAS  Google Scholar 

  21. Takeuchi, M., Kimura, T., Hidaka, M., Rakhmawaty, D. & Anpo, M. Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: effect of hydrophobicity of zeolites. J. Catal. 246, 235–240 (2007).

    Article  CAS  Google Scholar 

  22. Huang, H. et al. Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation. Appl. Catal. B 203, 870–878 (2017).

    Article  CAS  Google Scholar 

  23. Wang, Q., Li, H., Chen, L. & Huang, X. Monodispersed hard carbon spherules with uniform nanopores. Carbon 39, 2211–2214 (2001).

    Article  CAS  Google Scholar 

  24. Tosheva, L. & Valtchev, V. P. Nanozeolites: synthesis, crystallization mechanism, and applications. Chem. Mater. 17, 2494–2513 (2005).

    Article  CAS  Google Scholar 

  25. Israelachvili, J. N. in Intermolecular and Surface Forces 3rd edn (ed. Israelachvili, J. N.) 253–340 (Academic Press, 2011).

  26. Lee, J. S., Kim, J. H., Lee, Y. J., Jeong, N. C. & Yoon, K. B. Manual assembly of microcrystal monolayers on substrates. Angew. Chem. Int. Ed. 46, 3087–3090 (2007).

    Article  CAS  Google Scholar 

  27. Kudin, K. N. et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008).

    Article  CAS  Google Scholar 

  28. Li, Y., Guo, Q., Kalb, J. & Thompson, C. Matching glass-forming ability with the density of the amorphous phase. Science 322, 1816–1819 (2008).

    Article  CAS  Google Scholar 

  29. Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004).

    Article  CAS  Google Scholar 

  30. Yang, L.-P. et al. General synthetic strategy for hollow hybrid microspheres through a progressive inward crystallization process. J. Am. Chem. Soc. 138, 5916–5922 (2016).

    Article  CAS  Google Scholar 

  31. Cao, L., Chen, D. & Caruso, R. A. Surface-metastable phase-initiated seeding and ostwald ripening: a facile fluorine-free process towards spherical fluffy core/shell, yolk/shell, and hollow anatase nanostructures. Angew. Chem. Int. Ed. 52, 10986–10991 (2013).

    Article  CAS  Google Scholar 

  32. Lai, X. et al. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 50, 2738–2741 (2011).

    Article  CAS  Google Scholar 

  33. Wang, J. Y., Wan, J. W. & Wang, D. Hollow multishelled structures for promising applications: understanding the structure–performance correlation. Acc. Chem. Res. 52, 2169–2178 (2019).

    Article  CAS  Google Scholar 

  34. Xu, Y. et al. Selective conversion of syngas to aromatics over Fe3O4@MnO2 and hollow HZSM-5 bifunctional catalysts. ACS Catal. 9, 5147–5156 (2019).

    Article  CAS  Google Scholar 

  35. Zhao, B. et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts. Chem 3, 323–333 (2017).

    Article  CAS  Google Scholar 

  36. Xu, Y., Wang, J., Ma, G., Lin, J. & Ding, M. Designing of hollow ZSM-5 with controlled mesopore sizes to boost gasoline production from syngas. ACS Sustain. Chem. Eng. 7, 18125–18132 (2019).

    Article  CAS  Google Scholar 

  37. Selvin, R., Hsu, H. L., Roselin, L. S. & Bououdina, M. Effect of aging on the precursor sol for the synthesis of nanocrystalline ZSM-5. Synth. React. Inorg. Met. Org. Nano. Met. Chem. 41, 1028–1032 (2011).

    Article  CAS  Google Scholar 

  38. Roselin, L. S., Selvin, R. & Bououdina, M. Nanocrystalline ZSM-5: an efficient catalyst for regioselective acetolysis of epichlorohydrin. Chem. Eng. Commun. 199, 221–230 (2012).

    Article  CAS  Google Scholar 

  39. Yordanov, I. et al. Elucidation of Pt clusters in the micropores of zeolite nanoparticles assembled in thin films. J. Phys. Chem. C 114, 20974–20982 (2010).

    Article  CAS  Google Scholar 

  40. Hartman, T., Geitenbeek, R. G., Whiting, G. T. & Weckhuysen, B. M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2, 986–996 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.M.W. acknowledges financial support from the Netherlands Organization for Scientific Research (NWO) in the frame of a Gravitation Program MCEC (Netherlands Center for Multiscale Catalytic Energy Conversion, www.mcec-researchcenter.nl). X.X. (Utrecht University) acknowledges financial support from the EU H2020-MSCA-ITN-2015 project ‘MULTIMAT’ (project no. 676045). K.C. and Y.W. acknowledge financial support from the National Natural Science Foundation of China (grant nos. 91945301, 22121001 and 22072120). J.X. thanks D. Wezendonk (Utrecht University) for his help with the in situ XRD measurements.

Author information

Authors and Affiliations

Authors

Contributions

J.X., B.M.W., K.C. and Y.W. conceived and designed the experiments. B.M.W. and Y.W. supervised the project. J.X. synthesized and characterized the materials, analysed the data and wrote the initial manuscript. K.C. and M.W. performed the catalytic reactions, analysed the resulting data and drafted the catalytic reaction part. X.X. and M.A.v.H. performed the (S)TEM-related measurements. Y.L. and T.H. performed the ex situ IR and in situ Raman measurements, respectively. S.X. performed a part of the SEM measurements and the ex situ Raman measurements. D.F. and K.B. contributed to the exploration of the zeolite secondary growth conditions. A.v.B. helped with the mechanistic understanding of the self-assembly process. J.X., B.M.W., K.C. and Y.W. revised the paper with contributions from all the other co-authors.

Corresponding authors

Correspondence to Ye Wang or Bert M. Weckhuysen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Michael Claeys and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Tables 1–7 and refs. 1–17.

Source data

Source Data Fig. 2

Source data for Fig. 2a,b.

Source Data Fig. 3

Source data for Fig. 3a–c,f,g.

Source Data Fig. 4

Source data for Fig. 4d,e–h,l,m–s.

Source Data Fig. 5

Source data for Fig. 5a–d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Cheng, K., Xie, X. et al. Tandem catalysis with double-shelled hollow spheres. Nat. Mater. 21, 572–579 (2022). https://doi.org/10.1038/s41563-021-01183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01183-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing