Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

FttA is a CPSF73 homologue that terminates transcription in Archaea

Abstract

Regulated gene expression is largely achieved by controlling the activities of essential, multisubunit RNA polymerase transcription elongation complexes (TECs). The extreme stability required of TECs to processively transcribe large genomic regions necessitates robust mechanisms to terminate transcription. Efficient transcription termination is particularly critical for gene-dense bacterial and archaeal genomes1,2,3 in which continued transcription would necessarily transcribe immediately adjacent genes and result in conflicts between the transcription and replication apparatuses4,5,6; the coupling of transcription and translation7,8 would permit the loading of ribosomes onto aberrant transcripts. Only select sequences or transcription termination factors can disrupt the otherwise extremely stable TEC and we demonstrate that one of the last universally conserved archaeal proteins with unknown biological function is the Factor that terminates transcription in Archaea (FttA). FttA resolves the dichotomy of a prokaryotic gene structure (operons and polarity) and eukaryotic molecular homology (general transcription apparatus) that is observed in Archaea. This missing link between prokaryotic and eukaryotic transcription regulation provides the most parsimonious link to the evolution of the processing activities involved in RNA 3′-end formation in Eukarya.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FttA is a bona fide archaeal transcription termination factor.
Fig. 2: FttA-mediated termination shares mechanistic requirements of Rho-mediated bacterial transcription termination.
Fig. 3: FttA-mediated transcription termination is competitive with transcription elongation.
Fig. 4: Inhibition of FttA activity abolishes transcription termination in vitro and reduced FttA expression or activity alters steady-state RNA 3′ termini in vivo.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors on reasonable request. Source data for Figs. 1e and 4h, as well as Extended Data Figs. 2a, 3d and 5 are included in this article and its Supplementary Information files.

References

  1. Maier, L.-K. & Marchfelder, A. It’s all about the T: transcription termination in archaea. Biochem. Soc. Trans. 47, 461–468 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Santangelo, T. J. & Reeve, J. N. Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences. J. Mol. Biol. 355, 196–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Sela, I., Wolf, Y. I. & Koonin, E. V. Theory of prokaryotic genome evolution. Proc. Natl Acad. Sci. USA 113, 11399–11407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Helmrich, A., Ballarino, M., Nudler, E. & Tora, L. Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20, 412–418 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Washburn, R. S. & Gottesman, M. E. Transcription termination maintains chromosome integrity. Proc. Natl Acad. Sci. USA 108, 792–797 (2011).

    Article  PubMed  Google Scholar 

  6. Shin, J.-H., Santangelo, T. J., Xie, Y., Reeve, J. N. & Kelman, Z. Archaeal minichromosome maintenance (MCM) helicase can unwind DNA bound by archaeal histones and transcription factors. J. Biol. Chem. 282, 4908–4915 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Miller, O. L., Hamkalo, B. A. & Thomas, C. A. Visualization of bacterial genes in action. Science 169, 392–395 (1970).

    Article  PubMed  Google Scholar 

  8. French, S. L., Santangelo, T. J., Beyer, A. L. & Reeve, J. N. Transcription and translation are coupled in Archaea. Mol. Biol. Evol. 24, 893–895 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Ray-Soni, A., Bellecourt, M. J. & Landick, R. Mechanisms of bacterial transcription termination: all good things must end. Annu. Rev. Biochem. 85, 319–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Walker, J. E., Luyties, O. & Santangelo, T. J. Factor-dependent archaeal transcription termination. Proc. Natl Acad. Sci. USA 114, E6767–E6773 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santangelo, T. J. et al. Polarity in archaeal operon transcription in Thermococcus kodakaraensis. J. Bacteriol. 190, 2244–2248 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D’Heygere, F., Rabhi, M. & Boudvillain, M. Phyletic distribution and conservation of the bacterial transcription termination factor Rho. Microbiology 159, 1423–1436 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Makarova, K., Wolf, Y. & Koonin, E. Archaeal clusters of orthologous genes (arCOGs): an update and application for analysis of shared features between Thermococcales, Methanococcales, and Methanobacteriales. Life 5, 818–840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolf, Y. I., Makarova, K. S., Yutin, N. & Koonin, E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct 7, 46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Phung, D. K. et al. Archaeal β-CASP ribonucleases of the aCPSF1 family are orthologs of the eukaryal CPSF-73 factor. Nucleic Acids Res. 41, 1091–1103 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Mandel, C. R. et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444, 953–956 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Nishida, Y. et al. Crystal structure of an archaeal cleavage and polyadenylation specificity factor subunit from Pyrococcus horikoshii. Proteins 78, 2395–2398 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Galperin, M. Y., Kristensen, D. M., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Microbial genome analysis: the COG approach. Brief. Bioinform. 20, 1063–1070 (2017).

    Article  PubMed Central  Google Scholar 

  19. Santangelo, T. J., Cubonová, L., James, C. L. & Reeve, J. N. TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro. J. Mol. Biol. 367, 344–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Sanders, T. J. et al. TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin. Mol. Microbiol. 111, 784–797 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hirata, A. et al. Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive. Mol. Microbiol. 70, 623–633 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Santangelo, T. J. & Reeve, J. N. Deletion of switch 3 results in an archaeal RNA polymerase that is defective in transcript elongation. J. Biol. Chem. 285, 23908–23915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gehring, A. M. & Santangelo, T. J. Archaeal RNA polymerase arrests transcription at DNA lesions. Transcription 8, 288–296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gehring, A. M. & Santangelo, T. J. in Bacterial Transcriptional Control. Methods in Molecular Biology Vol. 1276 (eds Artsimovitch, I. & Santangelo, T.) 263–279 (Humana Press, 2015).

  25. Mir-Montazeri, B., Ammelburg, M., Forouzan, D., Lupas, A. N. & Hartmann, M. D. Crystal structure of a dimeric archaeal cleavage and polyadenylation specificity factor. J. Struct. Biol. 173, 191–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Kolev, N. G., Yario, T. A., Benson, E. & Steitz, J. A. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′-end maturation. EMBO Rep. 9, 1013–1018 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orlova, M., Newlands, J., Das, A., Goldfarb, A. & Borukhov, S. Intrinsic transcript cleavage activity of RNA polymerase. Proc. Natl Acad. Sci. USA 92, 4596–4600 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dengl, S. & Cramer, P. Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro. J. Biol. Chem. 284, 21270–21279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Phung, D. K. & Clouet-d’Orval, B. in RNA Remodeling Proteins. Methods in Molecular Biology Vol. 1259 (ed. Boudvillain, M.) 453–466 (Humana Press, 2015).

  30. Silva, A. P. G. et al. Structure and activity of a novel archaeal β-CASP protein with N-terminal KH domains. Structure 19, 622–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ray, W. C. & Daniels, C. J. PACRAT: a database and analysis system for archaeal and bacterial intergenic sequence features. Nucleic Acids Res. 31, 109–113 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gehring, A. M., Walker, J. E. & Santangelo, T. J. Transcription regulation in Archaea. J. Bacteriol. 198, 1906–1917 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smollett, K., Blombach, F., Reichelt, R., Thomm, M. & Werner, F. A global analysis of transcription reveals two modes of Spt4/5 recruitment to archaeal RNA polymerase. Nat. Microbiol. 2, 17021 (2017).

    Article  PubMed  Google Scholar 

  34. Cardinale, C. J. et al. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320, 935–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cortazar, M. A. et al. Control of RNA Pol II speed by PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a "sitting duck torpedo" mechanism. Mol. Cell 76, 896–908 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lawson, M. R. & Berger, J. M. Tuning the sequence specificity of a transcription terminator. Curr. Genet. 65, 729–733 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lawson, M. R. et al. Mechanism for the regulated control of bacterial transcription termination by a universal adaptor protein. Mol. Cell 71, 911–922 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mitra, P., Ghosh, G., Hafeezunnisa, M. & Sen, R. Rho protein: roles and mechanisms. Annu. Rev. Microbiol. 71, 687–709 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Werner, F. & Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 9, 85–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Nagy, J. et al. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. Nat. Commun. 6, 6161 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Plaschka, C. et al. Architecture of the RNA polymerase II–Mediator core initiation complex. Nature 518, 376–380 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Walker, J. E. & Santangelo, T. J. Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase. Methods 86, 73–79 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Horsfall, L. E. et al. Competitive inhibitors of the CphA metallo-β-lactamase from Aeromonas hydrophila. Antimicrob. Agents Chemother. 51, 2136–2142 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jäger, D., Förstner, K. U., Sharma, C. M., Santangelo, T. J. & Reeve, J. N. Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis. BMC Genomics 15, 684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Speed, M. C., Burkhart, B. W., Picking, J. W. & Santangelo, T. J. An archaeal fluoride-responsive riboswitch provides an inducible expression system for hyperthermophiles. Appl. Environ. Microbiol. 84, e02306–e02317 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sarmiento, F., Mrázek, J. & Whitman, W. B. Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc. Natl Acad. Sci. USA 110, 4726–4731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, C., Phillips, A. P. R., Wipfler, R. L., Olsen, G. J. & Whitaker, R. J. The essential genome of the crenarchaeal model Sulfolobus islandicus. Nat. Commun. 9, 4908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garas, M., Dichtl, B. & Keller, W. The role of the putative 3′ end processing endonuclease Ysh1p in mRNA and snoRNA synthesis. RNA 14, 2671–2684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ryan, K., Calvo, O. & Manley, J. L. Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA 10, 565–573 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Santangelo, T. J., Cubonová, L. & Reeve, J. N. Thermococcus kodakarensis genetics: TK1827-encoded β-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology. Appl. Environ. Microbiol. 76, 1044–1052 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Gehring, A., Sanders, T. & Santangelo, T. J. Markerless gene editing in the hyperthermophilic archaeon Thermococcus kodakarensis. Bio. Protoc. 7, e2604 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li, Z., Santangelo, T. J., Cuboňová, L., Reeve, J. N. & Kelman, Z. Affinity purification of an archaeal DNA replication protein network. mBio 1, e00221-10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Burkhart, B. W., Febvre, H. P. & Santangelo, T. J. Distinct physiological roles of the three ferredoxins encoded in the hyperthermophilic archaeon Thermococcus kodakarensis. mbio 10, e02807-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dar, D., Prasse, D., Schmitz, R. A. & Sorek, R. Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea. Nat. Microbiol. 1, 16143 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Cohen, O. et al. Comparative transcriptomics across the prokaryotic tree of life. Nucleic Acids Res. 44, W46–W53 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun, Y. et al. Molecular basis for the recognition of the human AAUAAA polyadenylation signal. Proc. Natl Acad. Sci. USA 115, E1419–E1428 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Clerici, M., Faini, M., Muckenfuss, L. M., Aebersold, R. & Jinek, M. Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex. Nat. Struct. Mol. Biol. 25, 135–138 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eaton, J. D. et al. Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity. Genes Dev. 32, 127–139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hill, C. H. et al. Activation of the endonuclease that defines mRNA 3′ ends requires incorporation into an 8-subunit core cleavage and polyadenylation factor complex. Mol. Cell 73, 1217–1231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  63. Mattiroli, F. et al. Structure of histone-based chromatin in Archaea. Science 357, 609–612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roberts, J. W. Mechanisms of bacterial transcription termination. J. Mol. Biol. 43, 4030–4039 (2019).

    Article  CAS  Google Scholar 

  65. Mishra, S. & Maraia, R. J. RNA polymerase III subunits C37/53 modulate rU:dA hybrid 3′ end dynamics during transcription termination. Nucleic Acids Res. 47, 310–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Sanders, T. J., Marshall, C. J. & Santangelo, T. J. The role of archaeal chromatin in transcription. J. Mol. Biol. 431, 4103–4115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dar, D. et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352, aad9822 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spitalny, P. & Thomm, M. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol. Microbiol. 67, 958–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blombach, F., Matelska, D., Fouqueau, T., Cackett, G. & Werner, F. Key concepts and challenges in archaeal transcription. J. Mol. Biol. 431, 4184–4201 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Shashni, R., Qayyum, M. Z., Vishalini, V., Dey, D. & Sen, R. Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho. Nucleic Acids Res. 42, 9677–9690 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Valabhoju, V., Agrawal, S. & Sen, R. Molecular basis of NusG-mediated regulation of Rho-dependent transcription termination in bacteria. J. Biol. Chem. 291, 22386–22403 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peters, J. M. et al. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 26, 2621–2633 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fong, N. et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60, 256–267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Santangelo laboratory for critical review of the manuscript. This work was supported by the National Institutes of Health grant no. GM100329 (to T.J. Santangelo).

Author information

Authors and Affiliations

Authors

Contributions

T.J. Sanders performed in vitro transcription and RNase digestions, designed and purified FttA variants, designed and assisted in the construction of T. kodakarensis strain IR5, purified proteins and templates, generated qRT–PCR data, analysed data, built structural models, performed western blots, prepared figures and helped write the manuscript. B.R.W. performed in vitro transcription and RNase digestions, designed templates and FttA variants, manipulated TK1428 genomic sequences and prepared figures. J.N.S. generated FttA variants, purified transcription proteins, performed bioinformatic analyses, manipulated TK1428 genomic sequences to generate strain TK1428D, built structural models and prepared figures. M.P.B. and S.A.T. manipulated TK1428 genomic sequences, generated and analysed qRT–PCR data and assisted with western blots and protein purifications. J.E.W. purified FttA variants and performed in vitro transcription. T.J. Santangelo conceived and directed the project, wrote the manuscript, analysed data and prepared figures.

Corresponding author

Correspondence to Thomas J. Santangelo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Transcription termination mechanisms commonly employed in Bacteria, Eukarya and Archaea.

Intrinsic transcription termination in Bacteria (a), Archaea (b), and for eukaryotic Pol III (c) results in release of the entire 5′-triphosphate-containing RNA transcript following transcription through a region of dyad-symmetry encoding an RNA hairpin immediately proceeded a T-rich non-template strand sequence (Bacteria)64 or T-rich non-template strand sequences (Archaea and eukaryotic Pol III)20,32,65,66,67,68,69. d, g, Factor-mediated bacterial transcription termination64, driven by rho or Mfd, also directs release of the entire nascent transcript and results in collapse of the TEC and recycling of RNAP. Rho-mediated termination is aided by NusG (Spt5 in Eukarya and Archaea)34,36,70,71,72. e, Release of the majority of the nascent transcript cannot be considered a bona fide termination event in-of-itself. RNA processing events, such as the endonucleolytic cleavage of the nascent RNA within eukaryotic Pol II TECs by the cleavage and polyadenylation factor complex (CPSF)16,25,50,57,61 yield a 5′-fragment that is often further processed – typically by the addition of a 3′-polyA tail for many Pol II transcripts – but also a 3′-fragment that is encapsulated within a still-stable TEC;28,60 the combined activities of CPSF and Xrn2 are necessary for normal termination patterns in Eukarya59,60,73. f, FttA can cleave the nascent transcript and terminate the archaeal transcription apparatus. g, h, Both bacterial Mfd and archaeal Eta can disrupt stalled TECs and release full-length transcripts by rewinding the transcription bubble.

Extended Data Fig. 2 FttA is highly conserved and shares structural and sequence homology with eukaryotic CPSF73.

Recombinant FttA (the protein product of T. kodakarensis TK1428; TK1428p) is 73.5 Kda, 85˚C thermotolerant and free of contaminating proteins. Lane M contains molecular weight standards in Kda. Data shown are from a single experiment. b, The crystal structure of FttA from Pyrococcus horikoshii (PDB: 3AF5)17 shown in chainbow coloring (N-terminus in purple to C-terminus in red) reveals two N-terminal KH-domains attached by a linker to a C-terminal MBL fold. Alpha-carbons of highly conserved residues in archaeal FttA homologues are shown in colored spheres. c, The MBL-fold of FttA is nearly structural identical to the MBL-fold of the human CPSF73 protein (PDB: 2I7T)16.

Source data

Extended Data Fig. 3 The RNA cleavage activity of FttA is stimulated by interactions with the archaeal TEC and FttA-mediated termination prefers C-rich transcripts.

Promoter-directed transcription of biotinylated templates encoding a C-less cassette permits formation of TECs with increasing length A-, G-, and U-rich nascent transcripts, respectively. FL = full-length; all templates permit elongation for 100 nts beyond the C-less cassette. b, TECs remain stably associated and transcripts are primarily recovered in the pellet (P) fraction in the absence (-) of FttA. When FttA is present ( + ), but nascent transcripts are devoid of CMP, minimal FttA-mediated transcript cleavage or termination occurs, and transcripts are not released to the supernatant (S). Lane M contains 32P-labeled ssDNA markers. Similar results were observed in 3 independent experiments and quantified (n = 3) in Fig. 2d. c, FttA demonstrates minimal RNase activity on an isolated + 125 nt transcript. Control reactions with RNaseA demonstrate that the purified transcript is not resistant to the activity of RNases. Similar results were observed in 2 independent experiments. d, Addition of T. kodakarensis RNAP to reactions containing purified + 125 nt transcripts does not stimulate FttA activity over 30 min. Similar results were obtained in two independent experiments.

Source data

Extended Data Fig. 4 The active center of FttA, an intact Spt4/5 complex and the stalk domain of the archaeal RNAP are necessary for efficient and kinetically-competitive FttA-mediated termination in vitro.

TECs+125 were assembled using promoter directed, biotinylated DNA templates. Intact TECs are bound to pellet fractions (P) while released transcripts are recovered from the supernatant (S). b, FttAH255A retains only minimal cleavage and termination activity alone, and inefficiently terminates stalled or slowly elongating TECs (lanes 17–24). FttAH255A-mediated termination becomes more efficient upon addition of Spt4-Spt5 but remains non-competitive with transcription elongation at high [NTP] (lanes 25–32). Note that the left part of this figure (lanes 1–16) is a duplication of the left part of Fig. 3c. c, Spt4/5 complexes stimulate FttA-mediated termination (Fig. 3), however, addition of Spt5 alone, containing (lanes 17–24) or lacking (lanes 25–32) the N-terminal NGN domain, fails to stimulate FttA-mediated termination to be competitive with transcription elongation at high [NTPs]. d, Spt4 alone, or together with the KOW domain of Spt5, is insufficient to stimulate FttA-mediated termination to be competitive with transcription elongation at high [NTPs]. e, While TECs assembled with RNAPWT support kinetically-competitive FttA-mediated termination (Fig. 3), TECs generated with RNAP ΔF/ΔE only support FttA-mediated termination of stalled or slowly elongating complexes. The absence of the stalk domain impairs both FttA-mediated cleavage and release of the nascent transcript, and while FttA-activity can be stimulated by the addition of Spt4/5, the hinderance to FttA-mediated termination in the absence of the stalk domain impairs FttA-mediated termination under condition of high [NTP]. Each experiment (be) was performed once independently.

Extended Data Fig. 5 FttA is an abundant protein likely responsible for 3′-end formation in archaeal cells.

Quantitative Western blots employing anti-FttA antibodies, purified recombinant FttA, and total cellular lysates derived from known numbers of lysed T. kodakarensis cells reveal that FttA is present at ~2,100 -/ + 500 copies per cell. Cell counts and protein calculations were performed as described20. A, B and C represent independent biological samples.

Source data

Extended Data Fig. 6 Gentle-purification of FttA directly from lysates of T. kodakarensis strain TK1428D.

Top panels show SDS-PAGE gels of fractions recovered from imidazole elutions of total cell lysates from strains TK1428D (left) and TS559 (right) resolved over 5 ml Ni2+-charged chelating columns (GE Healthcare). Bottom panels are Western blots of the same fractions from above probed with anti-HA antibodies to identify fractions within TK1428D lysates that contain FttA. The fractions pooled and analyzed by MuDPIT are identified. Magic Mark protein ladders are identified by molecular weight in Kda to the left of the gels. Data shown are from a single experiment.

Extended Data Fig. 7

Proteins identified as co-eluting partners of FttA from lysates of strain TK1428D.

Extended Data Fig. 8 FttA-mediated transcription termination completes the archaeal transcription cycle.

Promoter-directed assembly of pre-initiation complexes requires RNAP, TFB and TBP and is often assisted by TFE. De novo RNA synthesis permits promoter escape and transcription initiation factors are replaced by transcription elongation factors TFS and Spt4-Spt5. The absence of a nuclear compartment permits translation initiation and the normal coupling of the archaeal transcription and translation apparatuses throughout transcription of the gene or operon, but this coupling is disrupted by translation termination. The exposed nascent transcript likely permits loading of FttA to TECs and FttA activity mediates cleavage of nascent transcripts and release of RNAP to solution.

Supplementary Information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Source data

Source Data Fig. 1

The uncropped western blot used in Fig. 1e.

Source Data Fig. 4

The uncropped western blot used in Fig. 4h.

Source Data Extended Data Fig. 2

The uncropped SDS–PAGE used in Extended Data Fig. 2a.

Source Data Extended Data Fig. 3

The uncropped denaturing urea–PAGE used in Extended Data Fig. 3d.

Source Data Extended Data Fig. 5

The uncropped western blot used in Extended Data Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanders, T.J., Wenck, B.R., Selan, J.N. et al. FttA is a CPSF73 homologue that terminates transcription in Archaea. Nat Microbiol 5, 545–553 (2020). https://doi.org/10.1038/s41564-020-0667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-020-0667-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing