Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enabling smart vision with metasurfaces

Subjects

Abstract

Optical metasurfaces—subwavelength-patterned surfaces that interact strongly with light—have been an active area of research for more than a decade. The field has been driven by the key advantages of this concept, including the ultimate miniaturization of optical elements, empowering novel functionalities that process hidden modalities of light, and the opportunity to tune their properties on demand. A large number of applications with a focus on smart vision have emerged, foreseeing a meta-optical device under the hood of any robotic system. Nowadays, the field is experiencing a solid industry pull that defines the challenges and research directions. This review overviews the application focus of the field defined by the growing number of optical functionalities. We describe the current challenges and outline the research frontiers in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metasurfaces are dramatically enhancing the vision of robotic and autonomous systems.
Fig. 2: Metasurface functionalities.
Fig. 3: Novel metasurface geometries and materials.
Fig. 4: Metasurface challenges.
Fig. 5: Research frontiers in the metasurface field.
Fig. 6: Metasurfaces enabling smart vision.

Similar content being viewed by others

References

  1. Bomzon, Z. E., Kleiner, V. & Hasman, E. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001).

    ADS  Google Scholar 

  2. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    ADS  Google Scholar 

  3. McPhedran, R. C., Shadrivov, I. V., Kuhlmey, B. T. & Kivshar, Y. S. Metamaterials and metaoptics. NPG Asia Mater. 3, 100–108 (2011).

    Google Scholar 

  4. Chu, J. S. G. & Evans, J. A. Slowed canonical progress in large fields of science. Proc. Natl Acad. Sci. USA 118, e2021636118 (2021).

    Google Scholar 

  5. Ko, Y. H. & Magnusson, R. Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance? Optica 5, 289–294 (2018).

    ADS  Google Scholar 

  6. Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Google Scholar 

  7. Wang, S. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017).

    ADS  Google Scholar 

  8. Engelberg, J. & Levy, U. Achromatic flat lens performance limits. Optica 8, 834–845 (2021).

    ADS  Google Scholar 

  9. Zou, X. et al. Imaging based on metalenses. PhotoniX 1, 2 (2020).

    Google Scholar 

  10. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    ADS  Google Scholar 

  11. Zhou, Y., Zheng, H., Kravchenko, I. I. & Valentine, J. Flat optics for image differentiation. Nat. Photon. 14, 316–323 (2020).

    ADS  Google Scholar 

  12. Wesemann, L. et al. Nanophotonics enhanced coverslip for phase imaging in biology. Light Sci. Appl. 10, 98 (2021).

    ADS  Google Scholar 

  13. Balaur, E. et al. Colorimetric histology using plasmonically active microscope slides. Nature 598, 65–71 (2021).

    ADS  Google Scholar 

  14. Altug, H., Oh, S.-H., Maier, S. A. & Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).

    ADS  Google Scholar 

  15. Coffey, V. C. Machine vision: The Eyes of Industry 4.0. Opt. Photon. News 29, 42–49 (2018).

    ADS  Google Scholar 

  16. Lee, G.-Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).

    ADS  Google Scholar 

  17. An, J. et al. Slim-panel holographic video display. Nat. Commun. 11, 5568 (2020).

    ADS  Google Scholar 

  18. Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).

    ADS  Google Scholar 

  19. Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Atwater, H. A. et al. Materials challenges for the Starshot lightsail. Nat. Mater. 17, 861–867 (2018).

    ADS  Google Scholar 

  21. Tung, H.-T. & Davoyan, A. R. Low-power laser sailing for fast-transit space flight. Nano Lett. 22, 1108–1114 (2022).

    ADS  Google Scholar 

  22. Abumarshoud, H. et al. LiFi through reconfigurable intelligent surfaces: a new frontier for 6G? IEEE Veh. Technol. Mag. 17, 37–46 (2022).

    Google Scholar 

  23. Overvig, A. C., Mann, S. A. & Alù, A. Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions. Phys. Rev. 11, 021050 (2021).

    Google Scholar 

  24. Chang, C.-C., Huang, L., Nogan, J. & Chen, H.-T. Invited Article: narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures. APL Photonics 3, 051602 (2018).

    ADS  Google Scholar 

  25. Zheng, Z. et al. Planar narrow bandpass filter based on Si resonant metasurface. J. Appl. Phys. 130, 053105 (2021).

    ADS  Google Scholar 

  26. Kristensen, A. et al. Plasmonic colour generation. Nat. Rev. Mater. 2, 16088 (2016).

    ADS  Google Scholar 

  27. Daqiqeh Rezaei, S. et al. Nanophotonic structural colors. ACS Photonics 8, 18–33 (2021).

    Google Scholar 

  28. Flauraud, V., Reyes, M., Paniagua-Domínguez, R., Kuznetsov, A. I. & Brugger, J. Silicon nanostructures for bright field full color prints. ACS Photonics 4, 1913–1919 (2017).

    Google Scholar 

  29. Zou, X. et al. Pixel-level Bayer-type colour router based on metasurfaces. Nat. Commun. 13, 3288 (2022).

    ADS  Google Scholar 

  30. Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    ADS  Google Scholar 

  31. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017).

    ADS  Google Scholar 

  32. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    ADS  Google Scholar 

  33. Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    Google Scholar 

  34. Divitt, S., Zhu, W., Zhang, C., Lezec, H. J. & Agrawal, A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science 364, 890–894 (2019).

    ADS  Google Scholar 

  35. Ossiander, M. et al. Slow light nanocoatings for ultrashort pulse compression. Nat. Commun. 12, 6518 (2021).

    ADS  Google Scholar 

  36. Galiffi, E. et al. Photonics of time-varying media. Adv. Photonics 4, 014002 (2022).

    ADS  Google Scholar 

  37. Shirmanesh, G. K., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).

    Google Scholar 

  38. Guo, X., Ding, Y., Duan, Y. & Ni, X. Nonreciprocal metasurface with space-time phase modulation. Light Sci. Appl. 8, 123 (2019).

    ADS  Google Scholar 

  39. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    ADS  Google Scholar 

  40. Ren, H. et al. Metasurface orbital angular momentum holography. Nat. Commun. 10, 2986 (2019).

    ADS  Google Scholar 

  41. Pors, A., Albrektsen, O., Radko, I. P. & Bozhevolnyi, S. I. Gap plasmon-based metasurfaces for total control of reflected light. Sci. Rep. https://doi.org/10.1038/srep02155 (2013).

  42. Basiri, A. et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl. 8, 78 (2019).

    ADS  Google Scholar 

  43. Solomon, M. L., Hu, J., Lawrence, M., García-Etxarri, A. & Dionne, J. A. Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces. ACS Photonics 6, 43–49 (2019).

    Google Scholar 

  44. Sauvan, C., Hugonin, J. P., Maksymov, I. S. & Lalanne, P. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013).

    ADS  Google Scholar 

  45. Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staude, I. Light-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).

    Google Scholar 

  46. Tran, T. T. et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017).

    ADS  Google Scholar 

  47. Huang, L. et al. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. Rep. Prog. Phys. 85, 046401 (2022).

    ADS  Google Scholar 

  48. Fan, S. & Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022).

    ADS  Google Scholar 

  49. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    ADS  Google Scholar 

  50. Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

    ADS  Google Scholar 

  51. Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).

    ADS  Google Scholar 

  52. Grinblat, G. Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront control. ACS Photonics 8, 3406–3432 (2021).

    Google Scholar 

  53. Camacho-Morales, R. et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv. Photonics 3, 036002 (2021).

    ADS  Google Scholar 

  54. Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).

    ADS  Google Scholar 

  55. Santiago-Cruz, T. et al. Photon pairs from resonant metasurfaces. Nano Lett. 21, 4423–4429 (2021).

    ADS  Google Scholar 

  56. Zhang, J. et al. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces. Sci. Adv. 8, eabq4240 (2022).

    ADS  Google Scholar 

  57. Santiago-Cruz, T. et al. Resonant metasurfaces for generating complex quantum states. Science 377, 991–995 (2022).

    ADS  Google Scholar 

  58. Li, L. et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020).

    ADS  Google Scholar 

  59. Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    ADS  Google Scholar 

  60. Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018).

    ADS  Google Scholar 

  61. Horikawa, M., Fang, X. & Kubo, W. Metamaterial perfect absorber-enhanced plasmonic photo-thermoelectric conversion. Appl. Phys. Express 13, 082006 (2020).

    ADS  Google Scholar 

  62. Tanzid, M. et al. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photonics 5, 3472–3477 (2018).

    Google Scholar 

  63. Park, H. et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. Nano Lett. 14, 1804–1809 (2014).

    ADS  Google Scholar 

  64. Yi, S. et al. Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nat. Nanotechnol. 13, 1143–1147 (2018).

    ADS  Google Scholar 

  65. Zhu, A. Y. et al. Compact aberration-corrected spectrometers in the visible using dispersion-tailored metasurfaces. Adv. Opt. Mater. 7, 1801144 (2019).

    Google Scholar 

  66. Zhou, L. et al. Hot carrier multiplication in plasmonic photocatalysis. Proc. Natl Acad. Sci. USA 118, e2022109118 (2021).

    ADS  Google Scholar 

  67. Jia, Q. et al. Metal and metal oxide interactions and their catalytic consequences for oxygen reduction reaction. J. Am. Chem. Soc. 139, 7893–7903 (2017).

    Google Scholar 

  68. de Nijs, B. et al. Plasmonic tunnel junctions for single-molecule redox chemistry. Nat. Commun. 8, 994 (2017).

    ADS  Google Scholar 

  69. Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).

    Google Scholar 

  70. Ren, H. R. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948–955 (2020).

    ADS  Google Scholar 

  71. Wang, E. W., Sell, D., Phan, T. & Fan, J. A. Robust design of topology-optimized metasurfaces. Opt. Mater. Express 9, 469–482 (2019).

    ADS  Google Scholar 

  72. Rahmani, M. et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto Electron. Adv. 1, 180021 (2018).

    Google Scholar 

  73. Fedotova, A. et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett. 20, 8608–8614 (2020).

    ADS  Google Scholar 

  74. Anthur, A. P. et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett. 20, 8745–8751 (2020).

    ADS  Google Scholar 

  75. Colburn, S. et al. Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces [Invited]. Opt. Mater. Express 8, 2330–2344 (2018).

    ADS  Google Scholar 

  76. Schaeper, O. et al. Monolithic silicon carbide metalenses. ACS Photonics 9, 1409–1414 (2022).

    Google Scholar 

  77. Zhang, C. et al. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl. 9, 55 (2020).

    ADS  Google Scholar 

  78. Tseng, M. L. et al. Vacuum ultraviolet nonlinear metalens. Sci. Adv. 8, eabn5644 (2022).

    ADS  Google Scholar 

  79. Li, Z. et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).

    ADS  Google Scholar 

  80. Leitis, A. et al. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater. 30, 1910259 (2020).

    Google Scholar 

  81. Abdollahramezani, S. et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun. 13, 1696 (2022).

    ADS  Google Scholar 

  82. Zangeneh Kamali, K. et al. Reversible image contrast manipulation with thermally tunable dielectric metasurfaces. Small 15, 1805142 (2019).

    Google Scholar 

  83. Benea-Chelmus, I.-C. et al. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat. Commun. 13, 3170 (2022).

    ADS  Google Scholar 

  84. Karst, J. et al. Electrically switchable metallic polymer nanoantennas. Science 374, 612–616 (2021).

    ADS  Google Scholar 

  85. Komar, A. et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl. Phys. Lett. 110, 071109 (2017).

    ADS  Google Scholar 

  86. Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    ADS  Google Scholar 

  87. Li, Q. et al. Metasurface optofluidics for dynamic control of light fields. Nat. Nanotechnol. 17, 1097–1103 (2022).

    ADS  Google Scholar 

  88. Ajia, I. A. et al. Gigahertz nano-optomechanical resonances in a dielectric SiC-membrane metasurface array. Nano Lett. 21, 4563–4569 (2021).

    ADS  Google Scholar 

  89. Zhang, X. et al. Reconfigurable metasurface for image processing. Nano Lett. 21, 8715–8722 (2021).

    ADS  Google Scholar 

  90. Long, O. Y., Guo, C., Jin, W. & Fan, S. Polarization-independent isotropic nonlocal metasurfaces with wavelength-controlled functionality. Phys. Rev. Appl. 17, 024029 (2022).

    ADS  Google Scholar 

  91. Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).

    ADS  Google Scholar 

  92. Ren, H. et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun. 13, 4183 (2022).

    ADS  Google Scholar 

  93. Guo, C., Xiao, M., Minkov, M., Shi, Y. & Fan, S. Photonic crystal slab Laplace operator for image differentiation. Optica 5, 251–256 (2018).

    ADS  Google Scholar 

  94. Lin, Z. et al. End-to-end nanophotonic inverse design for imaging and polarimetry. Nanophotonics 10, 1177–1187 (2021).

    Google Scholar 

  95. Wang, H. et al. Design of compact meta-crystal slab for general optical convolution. ACS Photonics 9, 1358–1365 (2022).

    Google Scholar 

  96. Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020).

    Google Scholar 

  97. Chen, Y. et al. Metasurface integrated monolayer exciton polariton. Nano Lett. 20, 5292–5300 (2020).

    ADS  Google Scholar 

  98. Jha, P. K., Shitrit, N., Ren, X., Wang, Y. & Zhang, X. Spontaneous exciton valley coherence in transition metal dichalcogenide monolayers interfaced with an anisotropic metasurface. Phys. Rev. Lett. 121, 116102 (2018).

    ADS  Google Scholar 

  99. Xu, L. et al. Enhanced light-matter interactions in dielectric nanostructures via machine-learning approach. Adv. Photonics 2, 026003 (2020).

    ADS  Google Scholar 

  100. Chen, M. K., Liu, X., Sun, Y. & Tsai, D. P. Artificial intelligence in meta-optics. Chem. Rev. 122, 15356–15413 (2022).

    Google Scholar 

  101. Deng, Y., Ren, S., Fan, K., Malof, J. M. & Padilla, W. J. Neural-adjoint method for the inverse design of all-dielectric metasurfaces. Opt. Express 29, 7526–7534 (2021).

    ADS  Google Scholar 

  102. Overvig, A. & Alù, A. Diffractive nonlocal metasurfaces. Laser Photon. Rev 16, 2100633 (2022).

    ADS  Google Scholar 

  103. Leitis, A. et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 5, eaaw2871 (2019).

    ADS  Google Scholar 

  104. Vega, A., Pertsch, T., Setzpfandt, F. & Sukhorukov, A. A. Metasurface-assisted quantum ghost discrimination of polarization objects. Phys. Rev. Appl. 16, 064032 (2021).

    ADS  Google Scholar 

  105. Li, Z. et al. Non-Hermitian electromagnetic metasurfaces at exceptional points (Invited Review). Progress Electromagn. Res. 171, 1–20 (2021).

    Google Scholar 

  106. Zhao, J. et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci. Rev. 6, 231–238 (2018).

    Google Scholar 

  107. Zhou, Y. et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett. 18, 7529–7537 (2018).

    ADS  Google Scholar 

  108. Avayu, O., Almeida, E., Prior, Y. & Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017).

    ADS  Google Scholar 

  109. Hu, Y. et al. 3D-Integrated metasurfaces for full-colour holography. Light Sci. Appl. 8, 86 (2019).

    ADS  Google Scholar 

  110. Song, J.-H., van de Groep, J., Kim, S. J. & Brongersma, M. L. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking. Nat. Nanotechnol. 16, 1224–1230 (2021).

    ADS  Google Scholar 

  111. Aoni, R. A. et al. Resonant dielectric metagratings for response intensified optical sensing. Adv. Funct. Mater. 32, 2103143 (2022).

    Google Scholar 

  112. Ni, Y. et al. Metasurface for structured light projection over 120° field of view. Nano Lett. 20, 6719–6724 (2020).

    ADS  Google Scholar 

  113. Li, Z. et al. Tailoring MoS2 valley-polarized photoluminescence with super chiral near-field. Adv. Mater. 30, 1801908 (2018).

    Google Scholar 

Download references

Acknowledgements

We thank F. Capasso, S. Maier, K. Crozier and A. Davoyan for valuable discussions and M. Alaloul for feedback regarding metasurface detectors. This work was supported by the Australian Research Council Centre of Excellence (CE200100010), Discovery (DP200101353) and Linkage (LP180100904) programmes, as well as through a DARPA ENVision grant (HR00112220006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragomir N. Neshev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Sui Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neshev, D.N., Miroshnichenko, A.E. Enabling smart vision with metasurfaces. Nat. Photon. 17, 26–35 (2023). https://doi.org/10.1038/s41566-022-01126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01126-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing