Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer therapies based on targeted protein degradation — lessons learned with lenalidomide

Abstract

For decades, anticancer targeted therapies have been designed to inhibit kinases or other enzyme classes and have profoundly benefited many patients. However, novel approaches are required to target transcription factors, scaffolding proteins and other proteins central to cancer biology that typically lack catalytic activity and have remained mostly recalcitrant to drug development. The selective degradation of target proteins is an attractive approach to expand the druggable proteome, and the selective oestrogen receptor degrader fulvestrant served as an early example of this concept. Following a long and tragic history in the clinic, the immunomodulatory imide drug (IMiD) thalidomide was discovered to exert its therapeutic activity via a novel and unexpected mechanism of action: targeting proteins to an E3 ubiquitin ligase for subsequent proteasomal degradation. This discovery has paralleled and directly catalysed myriad breakthroughs in drug development, leading to the rapid maturation of generalizable chemical platforms for the targeted degradation of previously undruggable proteins. Decades of clinical experience have established front-line roles for thalidomide analogues, including lenalidomide and pomalidomide, in the treatment of haematological malignancies. With a new generation of ‘degrader’ drugs currently in development, this experience provides crucial insights into class-wide features of degraders, including a unique pharmacology, mechanisms of resistance and emerging therapeutic opportunities. Herein, we review these past experiences and discuss their application in the clinical development of novel degrader therapies.

Key points

  • Thalidomide analogues including lenalidomide and pomalidomide are anticancer agents used in the treatment of multiple haematological malignancies; induction of targeted protein degradation of disease-relevant proteins is the dominant mechanism of action of these agents.

  • ‘Degrader’ therapeutics have a catalytic, event-driven pharmacology, and their biological effects are a summation of the polypharmacology of multiple degraded neosubstrate proteins.

  • Cancers acquire resistance to thalidomide analogues by circumventing target protein degradation or by rewiring pathways downstream of target protein degradation.

  • Quantitative clinical proteomic assays can be used for pharmacodynamic monitoring of degrader therapeutics.

  • Molecular switches gated by degrader therapeutics can be used to control genetically engineered adoptive cell products that are being developed for anticancer immunotherapy.

  • Multiple classes of degrader therapeutics are expanding the druggable proteome to include previously undruggable, noncatalytic, cancer-relevant proteins, such as transcription factors, mRNA-splicing factors and cyclins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of targeted protein degradation.
Fig. 2: Event-driven versus occupancy-driven pharmacology.
Fig. 3: Mechanisms of resistance to targeted protein degradation.
Fig. 4: Genetically engineered cell therapies regulated by targeted protein degraders.

Similar content being viewed by others

References

  1. Stephens, T. & Brynner, R. Dark Remedy: The Impact of Thalidomide and its Revival as a Vital Medicine (Perseus Publishing, 2009).

  2. Lenz, W., Pfeiffer, R. A., Kosenow, W. & Hayman, D. J. Thalidomide and congenital abnormalities. Lancet 279, 45–46 (1962).

    Google Scholar 

  3. Mcbride, W. G. Thalidomide and congenital abnormalities. Lancet 278, 1358 (1961).

    Google Scholar 

  4. Mintz, M. “Heroine” of FDA keeps bad drug off of market. Washington Post (15 Jul 1962).

  5. Kaur, I., Dogra, S., Narang, T. & De, D. Comparative efficacy of thalidomide and prednisolone in the treatment of moderate to severe erythema nodosum leprosum: a randomized study. Australas. J. Dermatol. 50, 181–185 (2009).

    PubMed  Google Scholar 

  6. Pearson, J. M. H. & Vedagiri, M. Treatment of moderately severe erythema nodosum leprosum with thalidomide - a double-blind controlled trial. Lepr. Rev. 40, 111–116 (1969).

    CAS  PubMed  Google Scholar 

  7. D’Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl Acad. Sci. USA 91, 4082–4085 (1994).

    PubMed  PubMed Central  Google Scholar 

  8. Singhal, S. et al. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 341, 1565–1571 (1999).

    CAS  PubMed  Google Scholar 

  9. Rajkumar, S. V. et al. Combination therapy with thalidomide plus dexamethasone for newly diagnosed myeloma. J. Clin. Oncol. 20, 4319–4323 (2002).

    CAS  PubMed  Google Scholar 

  10. Rajkumar, S. V. et al. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol. 24, 431–436 (2006).

    CAS  PubMed  Google Scholar 

  11. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2013).

    PubMed  PubMed Central  Google Scholar 

  13. Gandhi, A. K. et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4 CRBN. Br. J. Haematol. 164, 811–821 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    CAS  PubMed  Google Scholar 

  15. Krönke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Fink, E. C. & Ebert, B. L. The novel mechanism of lenalidomide activity. Blood 126, 2366–2369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fischer, E. S. et al. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartlett, J. B., Dredge, K. & Dalgleish, A. G. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer 4, 314–322 (2004).

    CAS  PubMed  Google Scholar 

  19. Ramsay, A. G. et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J. Clin. Invest. 118, 2427–2437 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hagner, P. R. et al. CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood 126, 779–789 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Luptakova, K. et al. Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunol. Immunother. 62, 39–49 (2013).

    CAS  PubMed  Google Scholar 

  22. Muller, G. W. et al. Structural modifications of thalidomide produce analogs with enhanced tumor necrosis factor inhibitory activity. J. Med. Chem. 39, 3238–3240 (1996).

    CAS  PubMed  Google Scholar 

  23. Choueiri, T. K. et al. Phase II study of lenalidomide in patients with metastatic renal cell carcinoma. Cancer 107, 2609–2616 (2006).

    CAS  PubMed  Google Scholar 

  24. Eisen, T. et al. Results of a multicenter, randomized, double-blind phase 2/3 study of lenalidomide in the treatment of pretreated relapsed or refractory metastatic malignant melanoma. Cancer 116, 146–154 (2009).

    Google Scholar 

  25. Polizzotto, M. N. et al. Pomalidomide for symptomatic kaposi’s sarcoma in people with and without HIV infection: a phase I/II study. J. Clin. Oncol. 34, 4125–4131 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Weber, D. M. et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N. Engl. J. Med. 357, 2133–2142 (2007).

    CAS  PubMed  Google Scholar 

  27. Dimopoulos, M. et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N. Engl. J. Med. 357, 2123–2132 (2007).

    CAS  PubMed  Google Scholar 

  28. Leonard, J. P. et al. AUGMENT: a phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma. J. Clin. Oncol. 19, 1188–1199 (2019).

    Google Scholar 

  29. List, A. et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N. Engl. J. Med. 355, 1456–1465 (2006).

    CAS  PubMed  Google Scholar 

  30. FDA. FDA grants accelerated approval to pomalidomide for Kaposi sarcoma. US Food & Drug Administration https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pomalidomide-kaposi-sarcoma (2020).

  31. Richardson, P. G. et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100, 3063–3067 (2002).

    CAS  PubMed  Google Scholar 

  32. Rajkumar, S. V. et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood 106, 4050–4053 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Richardson, P. G. et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 108, 3458–3464 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Benboubker, L. et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N. Engl. J. Med. 371, 906–917 (2014).

    CAS  PubMed  Google Scholar 

  35. Richardson, P. G. et al. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 116, 679–686 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Facon, T. et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N. Engl. J. Med. 380, 2104–2115 (2019).

    CAS  PubMed  Google Scholar 

  37. McCarthy, P. L. et al. Lenalidomide after stem-cell transplantation for multiple myeloma. New Engl. J. Med. 366, 1770–1781 (2012).

    CAS  PubMed  Google Scholar 

  38. Attal, M. et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 366, 1782–1791 (2012).

    CAS  PubMed  Google Scholar 

  39. Barlogie, B. et al. Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N. Engl. J. Med. 354, 1021–1030 (2006).

    CAS  PubMed  Google Scholar 

  40. Palumbo, A. et al. Autologous transplantation and maintenance therapy in multiple myeloma. N. Engl. J. Med. 371, 895–905 (2014).

    PubMed  Google Scholar 

  41. McCarthy, P. L. et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J. Clin. Oncol. 35, 3279–3289 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldschmidt, H. et al. Bortezomib before and after high-dose therapy in myeloma: long-term results from the phase III HOVON-65/GMMG-HD4 trial. Leukemia 32, 383–390 (2017).

    PubMed  Google Scholar 

  43. Palumbo, A. et al. Continuous therapy versus fixed duration of therapy in patients with newly diagnosed multiple myeloma. J. Clin. Oncol. 33, 3459–3466 (2015).

    CAS  PubMed  Google Scholar 

  44. Madan, S. et al. Efficacy of retreatment with immunomodulatory drugs (IMiDs) in patients receiving IMiDs for initial therapy of newly diagnosed multiple myeloma. Blood 118, 1763–1765 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, M. et al. Lenalidomide plus dexamethasone is more effective than dexamethasone alone in patients with relapsed or refractory multiple myeloma regardless of prior thalidomide exposure. Blood 112, 4445–4451 (2008).

    CAS  PubMed  Google Scholar 

  46. Stewart, A. K. et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 372, 142–152 (2015).

    PubMed  Google Scholar 

  47. Moreau, P. et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 374, 1621–1634 (2016).

    CAS  PubMed  Google Scholar 

  48. Dimopoulos, M. A. et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 375, 1319–1331 (2016).

    CAS  PubMed  Google Scholar 

  49. Siegel, D. S. et al. Pomalidomide plus low‐dose dexamethasone in relapsed refractory multiple myeloma after lenalidomide treatment failure. Br. J. Haematol. 188, 501–510 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. Richardson, P. G. et al. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: a randomized phase 2 study. Blood 123, 1826–1832 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lacy, M. Q. et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood 118, 2970–2975 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Richardson, P. G. et al. Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial. Lancet Oncol. 20, 781–794 (2019).

    CAS  PubMed  Google Scholar 

  53. Chari, A. et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood 130, 974–981 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dimopoulos, M. A. et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N. Engl. J. Med. 379, 1811–1822 (2018).

    CAS  PubMed  Google Scholar 

  55. Stewart, A. K., Richardson, P. G. & San-Miguel, J. F. How I treat multiple myeloma in younger patients. Blood 114, 5436–5443 (2009).

    CAS  PubMed  Google Scholar 

  56. Qian, Z. et al. Lenalidomide synergizes with dexamethasone to induce growth arrest and apoptosis of mantle cell lymphoma cells in vitro and in vivo. Leukemia Res. 35, 380–386 (2011).

    CAS  Google Scholar 

  57. Rychak, E. et al. Pomalidomide in combination with dexamethasone results in synergistic anti-tumour responses in pre-clinical models of lenalidomide-resistant multiple myeloma. Br. J. Haematol. 172, 889–901 (2016).

    CAS  PubMed  Google Scholar 

  58. Das, D. S. et al. Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD ® immunomodulatory drug pomalidomide. Br. J. Haematol. 171, 798–812 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chauhan, D. et al. Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma. Blood 115, 834–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ocio, E. M. et al. In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and dexamethasone with either bortezomib or lenalidomide in multiple myeloma. Haematologica 95, 794–803 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. Siegel, D. S. et al. Vorinostat in combination with lenalidomide and dexamethasone in patients with relapsed or refractory multiple myeloma. Blood Cancer J. 4, e202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi, C.-X. et al. Proteasome inhibitors block Ikaros degradation by lenalidomide in multiple myeloma. Haematologica 100, e315–e317 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Palmer, A. C. & Sorger, P. K. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 171, 1678–1691.e13 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Orlowski, R. Z. et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J. Clin. Oncol. 20, 4420–4427 (2002).

    CAS  PubMed  Google Scholar 

  65. Chamberlain, P. P. & Hamann, L. G. Development of targeted protein degradation therapeutics. Nat. Chem. Biol. 15, 937–944 (2019).

    CAS  PubMed  Google Scholar 

  66. Zonder, J. A. et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood 120, 552–559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gavriatopoulou, M., Terpos, E. & Dimopoulos, M. A. The extended 4-year follow-up results of the ELOQUENT-2 trial. Oncotarget 10, 82–83 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Lonial, S. et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N. Engl. J. Med. 373, 621–631 (2015).

    CAS  PubMed  Google Scholar 

  69. Balasa, B. et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-α pathways. Cancer Immunol. Immunother. 64, 61–73 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Tai, Y.-T. et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112, 1329–1337 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Collins, S. M. et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol. Immunother. 62, 1841–1849 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Veer, M. S. van der et al. Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 96, 284–290 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Palumbo, A. et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med. 375, 754–766 (2016).

    CAS  PubMed  Google Scholar 

  74. Goy, A. et al. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J. Clin. Oncol. 31, 3688–3695 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Trněný, M. et al. Lenalidomide versus investigator’s choice in relapsed or refractory mantle cell lymphoma (MCL-002; SPRINT): a phase 2, randomised, multicentre trial. Lancet Oncol. 17, 319–331 (2016).

    PubMed  Google Scholar 

  76. Leonard, J. P. et al. Randomized trial of lenalidomide alone versus lenalidomide plus rituximab in patients with recurrent follicular lymphoma: CALGB 50401 (Alliance). J. Clin. Oncol. 33, 3635–3640 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Andorsky, D. J. et al. MAGNIFY: phase IIIb interim analysis of induction R2 followed by maintenance in relapsed/refractory indolent non-Hodgkin lymphoma [abstract]. J. Clin.Oncol. 37, 7513 (2019).

    Google Scholar 

  78. Morschhauser, F. et al. Rituximab plus lenalidomide in advanced untreated follicular lymphoma. N. Engl. J. Med. 379, 934–947 (2018).

    CAS  PubMed  Google Scholar 

  79. Ruan, J. et al. Lenalidomide plus rituximab as initial treatment for mantle-cell lymphoma. N. Engl. J. Med. 373, 1835–1844 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Badoux, X. C. et al. Phase II study of lenalidomide and rituximab as salvage therapy for patients with relapsed or refractory chronic lymphocytic leukemia. J. Clin. Oncol. 31, 584–591 (2013).

    CAS  PubMed  Google Scholar 

  81. Chanan-Khan, A. A. et al. Lenalidomide maintenance therapy in previously treated chronic lymphocytic leukaemia (CONTINUUM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Haematol. 4, e534–e543 (2017).

    PubMed  Google Scholar 

  82. Morschhauser, F. et al. Obinutuzumab combined with lenalidomide for relapsed or refractory follicular B-cell lymphoma (GALEN): a multicentre, single-arm, phase 2 study. Lancet Haematol. 6, e429–e437 (2019).

    PubMed  Google Scholar 

  83. Yang, Y. et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 21, 723–737 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nowakowski, G. S. et al. Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B-cell phenotype in newly diagnosed diffuse large B-cell lymphoma: a phase II study. J. Clin. Oncol. 33, 251–257 (2015).

    CAS  PubMed  Google Scholar 

  85. Vitolo, U. et al. ROBUST: first report of phase III randomized study of lenalidomide/R-CHOP (R 2 -CHOP) vs placebo/R-CHOP in previously untreated ABC-type diffuse large B-cell lymphoma. Hematol. Oncol. 37, 36–37 (2019).

    Google Scholar 

  86. Ferreri, A. J. M. et al. Lenalidomide maintenance in patients with relapsed diffuse large B-cell lymphoma who are not eligible for autologous stem cell transplantation: an open label, single-arm, multicentre phase 2 trial. Lancet Haematol. 4, e137–e146 (2017).

    PubMed  Google Scholar 

  87. Carpio, C. et al. Avadomide monotherapy in relapsed/refractory DLBCL: safety, efficacy, and a predictive gene classifier. Blood 135, 996–1007 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mullighan, C. G. et al. BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    CAS  PubMed  Google Scholar 

  89. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Georgopoulos, K. et al. The ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    CAS  PubMed  Google Scholar 

  91. Wang, J.-H. et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 9, 543–553 (1998).

    CAS  PubMed  Google Scholar 

  92. Morschhauser, F. et al. A phase 2, multicentre, single-arm, open-label study to evaluate the safety and efficacy of single-agent lenalidomide (Revlimid®) in subjects with relapsed or refractory peripheral T-cell non-Hodgkin lymphoma: the EXPECT trial. Eur. J. Cancer 49, 2869–2876 (2013).

    CAS  PubMed  Google Scholar 

  93. Ishida, T. et al. Multicenter phase II study of lenalidomide in relapsed or recurrent adult T-cell leukemia/lymphoma: ATLL-002. J. Clin. Oncol. 34, 4086–4093 (2016).

    CAS  PubMed  Google Scholar 

  94. Toumishey, E. et al. Final report of a phase 2 clinical trial of lenalidomide monotherapy for patients with T-cell lymphoma: lenalidomide therapy for T-cell lymphoma. Cancer 121, 716–723 (2014).

    PubMed  Google Scholar 

  95. Querfeld, C. et al. Results of an open-label multicenter phase 2 trial of lenalidomide monotherapy in refractory mycosis fungoides and Sézary syndrome. Blood 123, 1159–1166 (2014).

    CAS  PubMed  Google Scholar 

  96. List, A. et al. Efficacy of lenalidomide in myelodysplastic syndromes. N. Engl. J. Med. 352, 549–557 (2005).

    CAS  PubMed  Google Scholar 

  97. List, A., Ebert, B. L. & Fenaux, P. A decade of progress in myelodysplastic syndrome with chromosome 5q deletion. Leukemia 32, 1493–1499 (2018).

    PubMed  Google Scholar 

  98. Schneider, R. K. et al. Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS. Cancer Cell 26, 509–520 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Martinez-Høyer, S. et al. Loss of lenalidomide-induced megakaryocytic differentiation leads to therapy resistance in del(5q) myelodysplastic syndrome. Nat. Cell Biol. 22, 526–533 (2020).

    PubMed  Google Scholar 

  100. Jädersten, M. et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J. Clin. Oncol. 29, 1971–1979 (2011).

    PubMed  Google Scholar 

  101. Sekeres, M. A. et al. A phase 2 study of lenalidomide monotherapy in patients with deletion 5q acute myeloid leukemia: Southwest Oncology Group Study S0605. Blood 118, 523–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Boutboul, D. et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J. Clin. Invest. 128, 3071–3087 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Fang, J. et al. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes. Nat. Med. 22, 727–734 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fehniger, T. A. et al. A phase 2 study of high-dose lenalidomide as initial therapy for older patients with acute myeloid leukemia. Blood 117, 1828–1833 (2010).

    PubMed  Google Scholar 

  105. Blum, W. et al. Dose escalation of lenalidomide in relapsed or refractory acute leukemias. J. Clin. Oncol. 28, 4919–4925 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. DeAngelo, D. J. et al. A phase I study of lenalidomide plus chemotherapy with mitoxantrone, etoposide, and cytarabine for the reinduction of patients with acute myeloid leukemia. Am. J. Hematol. 93, 254–261 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Greenberg, P. L. et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J. Clin. Oncol. 22, 1078–1086 (2004).

    CAS  PubMed  Google Scholar 

  108. Feldman, E. J. et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J. Clin. Oncol. 23, 4110–4116 (2005).

    CAS  PubMed  Google Scholar 

  109. Narayan, R. et al. Sequential azacitidine plus lenalidomide in previously treated elderly patients with acute myeloid leukemia and higher risk myelodysplastic syndrome. Leukemia Lymphoma 57, 609–615 (2015).

    PubMed  Google Scholar 

  110. Craddock, C. et al. combination lenalidomide and azacitidine: a novel salvage therapy in patients who relapse after allogeneic stem-cell transplantation for acute myeloid leukemia. J. Clin. Oncol. 37, 580–588 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chihara, D. et al. Long-term results of a phase II trial of lenalidomide plus prednisone therapy for patients with myelofibrosis. Leukemia Res. 48, 1–5 (2016).

    CAS  Google Scholar 

  112. Bhutani, M., Polizzotto, M. N., Uldrick, T. S. & Yarchoan, R. Kaposi sarcoma–associated herpesvirus-associated malignancies: epidemiology, pathogenesis, and advances in treatment. Semin. Oncol. 42, 223–246 (2015).

    PubMed  Google Scholar 

  113. Shimada, K., Hayakawa, F. & Kiyoi, H. Biology and management of primary effusion lymphoma. Blood 132, 1879–1888 (2018).

    CAS  PubMed  Google Scholar 

  114. Zhang, L. et al. Phase 2 study using oral thalidomide-cyclophosphamide-prednisone for idiopathic multicentric Castleman disease. Blood 133, 1720–1728 (2019).

    CAS  PubMed  Google Scholar 

  115. Sperling, A. S. et al. Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood 134, 160–170 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Rasco, D. W. et al. A first-in-human study of novel cereblon modulator avadomide (CC-122) in advanced malignancies. Clin. Cancer Res. 25, 90–98 (2018).

    PubMed  Google Scholar 

  117. Matyskiela, M. E. et al. A cereblon modulator (CC-220) with improved degradation of ikaros and aiolos. J. Med. Chem. 61, 535–542 (2017).

    PubMed  Google Scholar 

  118. Bjorklund, C. C. et al. Iberdomide (CC-220) is a potent cereblon E3 ligase modulator with antitumor and immunostimulatory activities in lenalidomide- and pomalidomide-resistant multiple myeloma cells with dysregulated CRBN. Leukemia 34, 1197–1201 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Lonial, S. et al. First clinical (phase 1b/2a) study of iberdomide (CC-220; IBER), a CELMoD, in combination with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 37, 8006–8006 (2019).

    Google Scholar 

  121. Schafer, P. H. et al. Cereblon modulator iberdomide induces degradation of the transcription factors Ikaros and Aiolos: immunomodulation in healthy volunteers and relevance to systemic lupus erythematosus. Ann. Rheum. Dis. 77, 1516–1523 (2018).

    CAS  PubMed  Google Scholar 

  122. Lopez-Girona, A. et al. CC-92480 is a novel cereblon E3 ligase modulator with enhanced tumoricidal and immunomodulatory activity against sensitive and resistant multiple myeloma cells. Blood 134, 1812–1812 (2019).

    Google Scholar 

  123. Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535, 252–257 (2016).

    CAS  PubMed  Google Scholar 

  124. Uy, G. L. et al. Clinical activity of CC-90009, a cereblon E3 ligase modulator and first-in-class GSPT1 degrader, as a single agent in patients with relapsed or refractory acute myeloid leukemia (R/R AML): first results from a phase I dose-finding study. Blood 134, 232–232 (2019).

    Google Scholar 

  125. Kumar, S. et al. Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 21, 2035–2042 (2007).

    CAS  PubMed  Google Scholar 

  126. Mazumder, A. et al. Effect of lenalidomide therapy on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients. Leukemia 22, 1280–1281 (2007).

    PubMed  Google Scholar 

  127. Micallef, I. N. M. et al. Plerixafor (Mozobil) for stem cell mobilization in patients with multiple myeloma previously treated with lenalidomide. Bone Marrow Transpl. 46, 350–355 (2011).

    CAS  Google Scholar 

  128. Musto, P. et al. Second primary malignancies in multiple myeloma: an overview and IMWG consensus. Ann. Oncol. 28, 228–245 (2017).

    CAS  PubMed  Google Scholar 

  129. Jones, J. R. et al. Second malignancies in the context of lenalidomide treatment: an analysis of 2732 myeloma patients enrolled to the Myeloma XI trial. Blood Cancer J. 6, e506–e506 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Carrier, M., Gal, G. L., Tay, J., Wu, C. & Lee, A. Y. Rates of venous thromboembolism in multiple myeloma patients undergoing immunomodulatory therapy with thalidomide or lenalidomide: a systematic review and meta-analysis: venous thromboembolism in multiple myeloma. J. Thromb. Haemost. 9, 653–663 (2011).

    CAS  PubMed  Google Scholar 

  131. Chen, C. et al. Expanded safety experience with lenalidomide plus dexamethasone in relapsed or refractory multiple myeloma. Br. J. Haematol. 146, 164–170 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Knight, R., DeLap, R. J. & Zeldis, J. B. Lenalidomide and venous thrombosis in multiple myeloma. N. Engl. J. Med. 354, 2079–2080 (2006).

    CAS  PubMed  Google Scholar 

  133. Scarpace, S. et al. Arterial thrombosis in four patients treated with thalidomide. Leukemia Lymphoma 46, 239–242 (2005).

    PubMed  Google Scholar 

  134. Palumbo, A. et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 22, 414–423 (2008).

    CAS  PubMed  Google Scholar 

  135. Kaushal, V., Kaushal, G. P., Melkaveri, S. N. & Mehta, P. Thalidomide protects endothelial cells from doxorubicin-induced apoptosis but alters cell morphology. J. Thromb. Haemost. 2, 327–334 (2004).

    CAS  PubMed  Google Scholar 

  136. Nardone, B. et al. Risk of rash associated with lenalidomide in cancer patients: a systematic review of the literature and meta-analysis. Clin. Lymphoma Myeloma Leuk. 13, 424–429 (2013).

    CAS  PubMed  Google Scholar 

  137. Tinsley, S. M., Kurtin, S. E. & Ridgeway, J. A. Practical management of lenalidomide-related rash. Clin. Lymphoma Myeloma Leuk. 15, S64–S69 (2015).

    PubMed  Google Scholar 

  138. Lee, M. J. et al. Lenalidomide desensitization for delayed hypersensitivity reactions in 5 patients with multiple myeloma. Br. J. Haematol. 167, 127–131 (2014).

    CAS  PubMed  Google Scholar 

  139. FDA. Drugs @ FDA: FDA-approved drugs. US Food & Drug Administration https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=021880 (2019).

  140. Pawlyn, C. et al. Lenalidomide-induced diarrhea in patients with myeloma is caused by bile acid malabsorption that responds to treatment. Blood 124, 2467–2468 (2014).

    CAS  PubMed  Google Scholar 

  141. Fisher, S. L. & Phillips, A. J. Targeted protein degradation and the enzymology of degraders. Curr. Opin. Chem. Biol. 44, 47–55 (2018).

    CAS  PubMed  Google Scholar 

  142. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhu, Y. X. et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 118, 4771–4779 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sievers, Q. L., Gasser, J. A., Cowley, G. S., Fischer, E. S. & Ebert, B. L. Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4CRBN activity. Blood 132, 1293–1303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Patil, A., Manzano, M. & Gottwein, E. Genome-wide CRISPR screens reveal genetic mediators of cereblon modulator toxicity in primary effusion lymphoma. Blood Adv. 3, 2105–2117 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tateno, S. et al. Genome-wide screening reveals a role for subcellular localization of CRBN in the anti-myeloma activity of pomalidomide. Sci. Rep. 10, 4012 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kortüm, K. M. et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood 128, 1226–1233 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. Thakurta, A. et al. Absence of mutations in cereblon (CRBN) and DNA damage-binding protein 1 (DDB1) genes and significance for IMiD therapy. Leukemia 28, 1129–1131 (2013).

    PubMed  PubMed Central  Google Scholar 

  151. Gooding, S. et al. Multiple cereblon genetic changes associate with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood https://doi.org/10.1182/blood.2020007081 (2020).

    Article  Google Scholar 

  152. Huang, S.-Y. et al. Expression of cereblon protein assessed by immunohistochemicalstaining in myeloma cells is associated with superior response of thalidomide- and lenalidomide-based treatment, but not bortezomib-based treatment, in patients with multiple myeloma. Ann. Hematol. 93, 1371–1380 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Franssen, L. E. et al. Cereblon loss and up-regulation of c-Myc are associated with lenalidomide resistance in multiple myeloma patients. Haematologica 103, e368–e371 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Heintel, D. et al. High expression of cereblon (CRBN) is associated with improved clinical response in patients with multiple myeloma treated with lenalidomide and dexamethasone. Br. J. Haematol. 161, 695–700 (2013).

    CAS  PubMed  Google Scholar 

  155. Jonasova, A. et al. High level of full-length cereblon mRNA in lower risk myelodysplastic syndrome with isolated 5q deletion is implicated in the efficacy of lenalidomide. Eur. J. Haematol. 95, 27–34 (2014).

    PubMed  Google Scholar 

  156. Schuster, S. R. et al. The clinical significance of cereblon expression in multiple myeloma. Leukemia Res. 38, 23–28 (2013).

    Google Scholar 

  157. Pourabdollah, M. et al. High IKZF1/3 protein expression is a favorable prognostic factor for survival of relapsed/refractory multiple myeloma patients treated with lenalidomide. J. Hematol. Oncol. 9, 123 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Dimopoulos, K. et al. Expression of CRBN, IKZF1, and IKZF3 does not predict lenalidomide sensitivity and mutations in the cereblon pathway are infrequent in multiple myeloma. Leukemia Lymphoma 60, 1–9 (2018).

    Google Scholar 

  159. Gandhi, A. K. et al. Measuring cereblon as a biomarker of response or resistance to lenalidomide and pomalidomide requires use of standardized reagents and understanding of gene complexity. Br. J. Haematol. 164, 233–244 (2013).

    PubMed  PubMed Central  Google Scholar 

  160. Zhu, Y. X., Kortuem, K. M. & Stewart, A. K. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leukemia Lymphoma 54, 683–687 (2012).

    PubMed  PubMed Central  Google Scholar 

  161. Krönke, J. et al. IKZF1 expression is a prognostic marker in newly diagnosed standard-risk multiple myeloma treated with lenalidomide and intensive chemotherapy: a study of the German Myeloma Study Group (DSMM). Leukemia 31, 1363–1367 (2017).

    PubMed  Google Scholar 

  162. Reichermeier, K. M. et al. PIKES analysis reveals response to degraders and key regulatory mechanisms of the CRL4 network. Mol. Cell 77, 1092–1106.e9 (2020).

    CAS  PubMed  Google Scholar 

  163. Järås, M. et al. Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J. Exp. Med. 211, 605–612 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Scharenberg, C. et al. Progression in patients with low- and intermediate-1-risk del(5q) myelodysplastic syndromes is predicted by a limited subset of mutations. Haematologica 102, 498–508 (2016).

    PubMed  Google Scholar 

  165. Lodé, L. et al. Emergence and evolution of TP53 mutations are key features of disease progression in myelodysplastic patients with lower-risk del(5q) treated with lenalidomide. Haematologica 103, e143–e146 (2017).

    PubMed  Google Scholar 

  166. Hoofnagle, A. N., Becker, J. O., Wener, M. H. & Heinecke, J. W. Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin. Chem. 54, 1796–1804 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang, B. et al. Clinical potential of mass spectrometry-based proteogenomics. Nat. Rev. Clin. Oncol. 16, 256–268 (2019).

    PubMed  PubMed Central  Google Scholar 

  168. Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in duane radial ray syndrome. eLife 7, e38430 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. An, J. et al. pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4CRBN ubiquitin ligase. Nat. Commun. 8, 15398 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Petzold, G., Fischer, E. S. & Thomä, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. Nature 532, 127–130 (2016).

    CAS  PubMed  Google Scholar 

  171. Najafabadi, H. S. et al. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat. Biotechnol. 33, 555–562 (2015).

    CAS  PubMed  Google Scholar 

  172. Higgins, J. J., Pucilowska, J., Lombardi, R. Q. & Rooney, J. P. A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 63, 1927–1931 (2004).

    CAS  PubMed  Google Scholar 

  173. Eichner, R. et al. Immunomodulatory drugs disrupt the cereblon–CD147–MCT1 axis to exert antitumor activity and teratogenicity. Nat. Med. 22, 735–743 (2016).

    CAS  PubMed  Google Scholar 

  174. Lee, K. M. et al. Disruption of the cereblon gene enhances hepatic AMPK activity and prevents high-fat diet-induced obesity and insulin resistance in mice. Diabetes 62, 1855–1864 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Nguyen, T. V. et al. Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon. Mol. Cell 61, 809–820 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Mita, M. et al. Phase I study of E7820, an oral inhibitor of integrin α-2 expression with antiangiogenic properties, in patients with advanced malignancies. Clin. Cancer Res. 17, 193–200 (2011).

    CAS  PubMed  Google Scholar 

  177. Simon, G. R. et al. A phase I study of tasisulam sodium (LY573636 sodium), a novel anticancer compound in patients with refractory solid tumors. Cancer Chemother. Pharmacol. 68, 1233–1241 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Rigas, J. R. et al. Phase I clinical and pharmacological study of chloroquinoxaline sulfonamide. Cancer Res. 52, 6619–6623 (1992).

    CAS  PubMed  Google Scholar 

  179. Punt, C. J. A. et al. Phase I and pharmacokinetic study of E7070, a novel sulfonamide, given at a daily times five schedule in patients with solid tumors. A study by the EORTC-Early Clinical Studies Group (ECSG). Ann. Oncol. 12, 1289–1293 (2001).

    CAS  PubMed  Google Scholar 

  180. Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    PubMed  Google Scholar 

  181. Uehara, T. et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017).

    CAS  PubMed  Google Scholar 

  182. Ting, T. C. et al. Aryl sulfonamides degrade RBM39 and RBM23 by recruitment to CRL4-DCAF15. Cell Rep. 29, 1499–1510.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2020).

    CAS  PubMed  Google Scholar 

  184. Du, X. et al. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27, 1625–1633.e3 (2019).

    CAS  PubMed  Google Scholar 

  185. Słabicki, M. et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585, 293–297 (2020).

    PubMed  PubMed Central  Google Scholar 

  186. Mayor-Ruiz, C. et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16, 1199–1207 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Lv, L. et al. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife 9, e59994 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    CAS  PubMed  Google Scholar 

  189. Simonetta, K. R. et al. Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction. Nat. Commun. 10, 1402 (2019).

    PubMed  PubMed Central  Google Scholar 

  190. Kerres, N. et al. Chemically induced degradation of the oncogenic transcription factor BCL6. Cell Rep. 20, 2860–2875 (2017).

    CAS  PubMed  Google Scholar 

  191. Słabicki, M. et al. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 588, 164–168 (2020).

    PubMed  PubMed Central  Google Scholar 

  192. Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).

    CAS  PubMed  Google Scholar 

  193. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2017).

    PubMed  PubMed Central  Google Scholar 

  194. Roybal, K. T. & Lim, W. A. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities. Annu. Rev. Immunol. 35, 229–253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Stasi, A. D. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    PubMed  PubMed Central  Google Scholar 

  196. Chiocca, E. A. et al. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: results of a phase 1 trial. Sci. Transl Med. 11, eaaw5680 (2019).

    PubMed  PubMed Central  Google Scholar 

  197. Verma, R., Mohl, D. & Deshaies, R. J. Harnessing the power of proteolysis for targeted protein inactivation. Mol. Cell 77, 446–460 (2020).

    CAS  PubMed  Google Scholar 

  198. Banaszynski, L. A., Chen, L., Maynard-Smith, L. A., Ooi, A. G. L. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    CAS  PubMed  Google Scholar 

  200. Chung, H. K. et al. Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol. 11, 713–720 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Neklesa, T. K. et al. Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7, 538–543 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Buckley, D. L. et al. HaloPROTACS: use of small molecule protacs to induce degradation of halotag fusion proteins. ACS Chem. Biol. 10, 1831–1837 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Nabet, B. et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Preprint at bioRxiv https://doi.org/10.1101/2020.03.13.980946 (2020).

    Article  Google Scholar 

  204. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Clackson, T. et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl Acad. Sci. USA 95, 10437–10442 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Lee, S. M. et al. A chemical switch system to modulate chimeric antigen receptor T cell activity through proteolysis-targeting chimaera technology. ACS Synth. Biol. 9, 987–992 (2020).

    CAS  PubMed  Google Scholar 

  207. Weber, E. W. et al. Transient “rest” induces functional reinvigoration and epigenetic remodeling in exhausted CAR-T cells. Preprint at bioRxiv https://doi.org/10.1101/2020.01.26.920496 (2020).

    Article  Google Scholar 

  208. Koduri, V. et al. Peptidic degron for IMiD-induced degradation of heterologous proteins. Proc. Natl Acad. Sci. USA 116, 2539–2544 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Carbonneau, S. et al. An IMiD-inducible degron provides reversible regulation for chimeric antigen receptor expression and activity. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2020.11.012 (2020).

    Article  PubMed  Google Scholar 

  210. Jan, M. et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci. Transl Med. 13, eabb6295 (2021).

    CAS  PubMed  Google Scholar 

  211. Colombo, M. P. & Trinchieri, G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 13, 155–168 (2002).

    CAS  PubMed  Google Scholar 

  212. Moreau, P. et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet 394, 29–38 (2019).

    CAS  Google Scholar 

  213. Attal, M. et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet 394, 2096–2107 (2019).

    CAS  PubMed  Google Scholar 

  214. Varshavsky, A. The ubiquitin system, an immense realm. Biochemistry 81, 167–176 (2012).

    CAS  Google Scholar 

  215. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    CAS  PubMed  Google Scholar 

  216. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    CAS  PubMed  Google Scholar 

  217. Martinez-Høyer, S. & Karsan, A. Mechanisms of lenalidomide sensitivity and resistance. Exp. Hematol. 91, 22–31 (2020).

    PubMed  Google Scholar 

  218. Cortes, M., Wong, E., Koipally, J. & Georgopoulos, K. Control of lymphocyte development by the Ikaros gene family. Curr. Opin. Immunol. 11, 167–171 (1999).

    CAS  PubMed  Google Scholar 

  219. Cortés, M. & Georgopoulos, K. Aiolos is required for the generation of high affinity bone marrow plasma cells responsible for long-term immunity. J. Exp. Med. 199, 209–219 (2004).

    PubMed  PubMed Central  Google Scholar 

  220. Shaffer, A. L. et al. IRF4 addiction in multiple myeloma. Nature 454, 226–231 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Gandhi, R. et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell–like and Foxp3+ regulatory T cells. Nat. Immunol. 11, 846–853 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Quintana, F. J. et al. Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat. Immunol. 13, 770–777 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Elyada, E. et al. CKIα ablation highlights a critical role for p53 in invasiveness control. Nature 470, 409–413 (2011).

    CAS  PubMed  Google Scholar 

  224. Nijhawan, D. et al. Cancer vulnerabilities unveiled by genomic loss. Cell 150, 842–854 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Hoshino, S. et al. A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J. 8, 3807–3814 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhouravleva, G. et al. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Matyskiela, M. E. et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol. 14, 981–987 (2018).

    CAS  PubMed  Google Scholar 

  228. Knobloch, J. & Rüther, U. Shedding light on an old mystery: Thalidomide suppresses survival pathways to induce limb defects. Cell Cycle 7, 1121–1127 (2008).

    CAS  PubMed  Google Scholar 

  229. Coleman, K. G. & Crews, C. M. Proteolysis-targeting chimeras: harnessing the ubiquitin-proteasome system to induce degradation of specific target proteins. Annu. Rev. Cancer Biol. 2, 41–58 (2018).

    Google Scholar 

  230. Gerry, C. J. & Schreiber, S. L. Unifying principles of bifunctional, proximity-inducing small molecules. Nat. Chem. Biol. 16, 369–378 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).

    PubMed  PubMed Central  Google Scholar 

  232. Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Huang, H.-T. et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol. 25, 88–99.e6 (2018).

    CAS  PubMed  Google Scholar 

  234. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e5 (2018).

    CAS  PubMed  Google Scholar 

  235. Dobrovolsky, D. et al. Bruton tyrosine kinase degradation as a therapeutic strategy for cancer. Blood 133, 952–961 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Buhimschi, A. D. et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry 57, 3564–3575 (2018).

    CAS  PubMed  Google Scholar 

  237. Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

    CAS  PubMed  Google Scholar 

  238. Yamazoe, S. et al. Heterobifunctional molecules induce dephosphorylation of kinases–a proof of concept study. J. Med. Chem. 63, 2807–2813 (2019).

    Google Scholar 

  239. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    CAS  PubMed  Google Scholar 

  240. Neklesa, T. K. & Crews, C. M. Greasy tags for protein removal. Nature 487, 308–309 (2012).

    CAS  PubMed  Google Scholar 

  241. Ma, A. et al. Discovery of a first-in-class EZH2 selective degrader. Nat. Chem. Biol. 16, 214–222 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of M.J. is supported by a NIH T32 grant to the Massachusetts General Hospital Department of Pathology (NIH-5T32CA009216-39). The work of A.S.S. is supported by NIH grant K08CA252174. The work of B.L.E is supported by NIH grants R01HL082945 and P01CA108631, the Howard Hughes Medical Institute, the Edward P. Evans Foundation, the Leukemia and Lymphoma Society and the Adelson Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.J. and A.S.S. researched data for article. All authors contributed substantially to discussions of content and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Benjamin L. Ebert.

Ethics declarations

Competing interests

B.L.E. has received research funding from Celgene, Deerfield and Novartis, and consulting fees from GRAIL. He serves on the scientific advisory boards and holds equity in Exo Therapeutics, Neomorph Therapeutics and Skyhawk Therapeutics. M.J. and A.S.S. declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks Rajesh Chopra, Ze’ev Ronai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Molecular glue

A small molecule that directly bridges protein–protein interactions.

Neosubstrate

A protein that is conditionally targeted to a ubiquitin ligase in the presence of a small-molecule drug.

High-risk cytogenetic features

Chromosomal alterations that are associated with aggressive disease and unfavourable survival outcomes; in myeloma, these features include t(4;14), t(14;16) and del(17p) alterations.

Antibody-dependent cellular cytotoxicity

(ADCC). A mechanism of cell killing that requires recognition of the antibody-bound cell by immune effector cells, such as natural killer cells.

Activated B cell-like DLBCL

A subtype of diffuse large B cell lymphoma (DLBCL) that is defined by a specific transcriptional signature and is associated with high risk of relapse following standard rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) chemoimmunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, M., Sperling, A.S. & Ebert, B.L. Cancer therapies based on targeted protein degradation — lessons learned with lenalidomide. Nat Rev Clin Oncol 18, 401–417 (2021). https://doi.org/10.1038/s41571-021-00479-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00479-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing