Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Maladaptive regeneration — the reawakening of developmental pathways in NASH and fibrosis

Abstract

With the rapid expansion of the obesity epidemic, nonalcoholic fatty liver disease is now the most common chronic liver disease, with almost 25% global prevalence. Nonalcoholic fatty liver disease ranges in severity from simple steatosis, a benign ‘pre-disease’ state, to the liver injury and inflammation that characterize nonalcoholic steatohepatitis (NASH), which in turn predisposes individuals to liver fibrosis. Fibrosis is the major determinant of clinical outcomes in patients with NASH and is associated with increased risks of cirrhosis and hepatocellular carcinoma. NASH has no approved therapies, and liver fibrosis shows poor response to existing pharmacotherapy, in part due to an incomplete understanding of the underlying pathophysiology. Patient and mouse data have shown that NASH is associated with the activation of developmental pathways: Notch, Hedgehog and Hippo–YAP–TAZ. Although these evolutionarily conserved fundamental signals are known to determine liver morphogenesis during development, new data have shown a coordinated and causal role for these pathways in the liver injury response, which becomes maladaptive during obesity-associated chronic liver disease. In this Review, we discuss the aetiology of this reactivation of developmental pathways and review the cell-autonomous and cell-non-autonomous mechanisms by which developmental pathways influence disease progression. Finally, we discuss the potential prognostic and therapeutic implications of these data for NASH and liver fibrosis.

Key points

  • Nonalcoholic steatohepatitis (NASH), defined as liver lipid accumulation accompanied by injury and inflammation, is a prevalent condition without approved pharmacotherapy, leading to huge unmet needs for an increasingly obese population.

  • Developmental pathways, including Notch, Hedgehog, Hippo–YAP–TAZ and WNT–β-catenin, are fundamental regulators of cell fate decisions and morphogenesis in liver development.

  • Developmental pathways are also activated to promote regenerative proliferation and/or cellular reprogramming in response to liver injury.

  • In the face of chronic liver disease such as NASH, persistent and maladaptive activation of developmental pathways leads to exacerbated NASH, fibrosis and liver cancer.

  • Inhibitors targeting developmental pathways can ameliorate NASH and fibrosis in preclinical models, uncovering novel therapeutic possibilities for patients with NASH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of developmental pathways in mammalian cells.
Fig. 2: A network of developmental signalling controls lineage commitment during mouse liver development.
Fig. 3: Cellular reprogramming during mouse liver regeneration.
Fig. 4: Pathogenesis of NASH and fibrosis in mouse models.
Fig. 5: The role of developmental pathways in liver cancer.

Similar content being viewed by others

References

  1. Hossain, P., Kawar, B. & El Nahas, M. Obesity and diabetes in the developing world — a growing challenge. N. Engl. J. Med. 356, 213–215 (2007).

    CAS  PubMed  Google Scholar 

  2. Lazo, M. & Clark, J. M. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin. Liver Dis. 28, 339–350 (2008).

    PubMed  Google Scholar 

  3. Araujo, A. R., Rosso, N., Bedogni, G., Tiribelli, C. & Bellentani, S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: what we need in the future. Liver Int. 38 (Suppl. 1), 47–51 (2018).

    PubMed  Google Scholar 

  4. Loomba, R. & Sanyal, A. J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10, 686–690 (2013).

    CAS  PubMed  Google Scholar 

  5. Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

    PubMed  Google Scholar 

  6. Caligiuri, A., Gentilini, A. & Marra, F. Molecular pathogenesis of NASH. Int. J. Mol. Sci. 17, 1575 (2016).

    PubMed Central  Google Scholar 

  7. Younossi, Z. M. et al. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2020.05.064 (2020).

    Article  PubMed  Google Scholar 

  8. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018). This article comprehensively reviews the clinical features, risk factors, known pathogenic mechanisms, preclinical models and treatment possibilities of NAFLD.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwabe, R. F., Tabas, I. & Pajvani, U. B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 158, 1913–1928 (2020).

    CAS  PubMed  Google Scholar 

  10. Kim, D., Kim, W. R., Kim, H. J. & Therneau, T. M. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 57, 1357–1365 (2013).

    CAS  PubMed  Google Scholar 

  11. Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology 65, 1557–1565 (2017).

    CAS  PubMed  Google Scholar 

  12. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397.e10 (2015).

    PubMed  Google Scholar 

  13. Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61, 1547–1554 (2015).

    CAS  PubMed  Google Scholar 

  14. Vilar-Gomez, E. et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology 155, 443–457.e17 (2018). Together with references 11–13, this study reports that liver fibrosis is the major predictor of clinical outcomes in patients with NAFLD.

    PubMed  Google Scholar 

  15. Hannah, W. N. Jr. Torres, D. M. & Harrison, S. A. Nonalcoholic steatohepatitis and endpoints in clinical trials. Gastroenterol. Hepatol. 12, 756–763 (2016).

    Google Scholar 

  16. Affo, S., Yu, L. X. & Schwabe, R. F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol. 12, 153–186 (2017).

    CAS  PubMed  Google Scholar 

  17. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  18. Zhu, C. et al. Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aat0344 (2018). This paper demonstrates that aberrant Notch activity specifically in hepatocytes promotes NASH-associated liver fibrosis in a paracrine fashion.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Verdelho Machado, M. & Diehl, A. M. Role of hedgehog signaling pathway in NASH. Int. J. Mol. Sci. 17, 857 (2016).

    PubMed Central  Google Scholar 

  20. Yimlamai, D., Fowl, B. H. & Camargo, F. D. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer. J. Hepatol. 63, 1491–1501 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, X. et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 24, 848–862 (2016). This study shows that hepatocyte TAZ is stabilized in NASH and causes liver inflammation and fibrosis by stimulating Hedgehog ligand secretion.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mooring, M. et al. Hepatocyte stress increases expression of YAP and TAZ in hepatocytes to promote parenchymal inflammation and fibrosis. Hepatology 71, 1813–1830 (2020).

    CAS  PubMed  Google Scholar 

  23. Zong, Y. & Stanger, B. Z. Molecular mechanisms of liver and bile duct development. Wiley Interdiscip. Rev. Dev. Biol. 1, 643–655 (2012).

    CAS  PubMed  Google Scholar 

  24. Chillakuri, C. R., Sheppard, D., Lea, S. M. & Handford, P. A. Notch receptor-ligand binding and activation: insights from molecular studies. Semin. Cell Dev. Biol. 23, 421–428 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).

    CAS  PubMed  Google Scholar 

  26. Kageyama, R., Ohtsuka, T. & Kobayashi, T. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134, 1243–1251 (2007).

    CAS  PubMed  Google Scholar 

  27. Turnpenny, P. D. & Ellard, S. Alagille syndrome: pathogenesis, diagnosis and management. Eur. J. Hum. Genet. 20, 251–257 (2012).

    CAS  PubMed  Google Scholar 

  28. Loomes, K. M. et al. Characterization of Notch receptor expression in the developing mammalian heart and liver. Am. J. Med. Genet. 112, 181–189 (2002).

    PubMed  Google Scholar 

  29. Hofmann, J. J. et al. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 137, 4061–4072 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Geisler, F. et al. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 48, 607–616 (2008).

    CAS  PubMed  Google Scholar 

  31. Lozier, J., McCright, B. & Gridley, T. Notch signaling regulates bile duct morphogenesis in mice. PLoS ONE 3, e1851 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Zong, Y. et al. Notch signaling controls liver development by regulating biliary differentiation. Development 136, 1727–1739 (2009). This study shows that Notch controls multiple steps of bile duct development, including the determination of biliary fate and the formation of ductal structures.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Antoniou, A. et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 136, 2325–2333 (2009).

    PubMed  Google Scholar 

  34. Poncy, A. et al. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev. Biol. 404, 136–148 (2015).

    CAS  PubMed  Google Scholar 

  35. Sparks, E. E., Huppert, K. A., Brown, M. A., Washington, M. K. & Huppert, S. S. Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice. Hepatology 51, 1391–1400 (2010).

    CAS  PubMed  Google Scholar 

  36. Tanimizu, N. & Miyajima, A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J. Cell Sci. 117 (Pt. 15), 3165–3174 (2004).

    Google Scholar 

  37. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, B., Tumaneng, K. & Guan, K. L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol. 13, 877–883 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hansen, C. G., Moroishi, T. & Guan, K. L. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 25, 499–513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27–38 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, D. H. et al. LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4alpha expression during liver development. Nat. Commun. 7, 11961 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Alder, O. et al. Hippo signaling influences HNF4A and FOXA2 enhancer switching during hepatocyte differentiation. Cell Rep. 9, 261–271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yimlamai, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324–1338 (2014). This study demonstrates that YAP activation can reprogramme mature hepatocytes to adopt progenitor characteristics.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fitamant, J. et al. YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Rep. 10, 1692–1707 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Niewiadomski, P. et al. Gli proteins: regulation in development and cancer. Cells 8, 147 (2019).

    CAS  PubMed Central  Google Scholar 

  46. Deutsch, G., Jung, J., Zheng, M., Lora, J. & Zaret, K. S. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871–881 (2001).

    CAS  PubMed  Google Scholar 

  47. Hirose, Y., Itoh, T. & Miyajima, A. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells. Exp. Cell Res. 315, 2648–2657 (2009).

    CAS  PubMed  Google Scholar 

  48. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    CAS  PubMed  Google Scholar 

  49. Tan, X. et al. Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology 47, 1667–1679 (2008).

    CAS  PubMed  Google Scholar 

  50. Tan, X., Behari, J., Cieply, B., Michalopoulos, G. K. & Monga, S. P. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology 131, 1561–1572 (2006).

    CAS  PubMed  Google Scholar 

  51. Gougelet, A. et al. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology 59, 2344–2357 (2014).

    CAS  PubMed  Google Scholar 

  52. Benhamouche, S. et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev. Cell 10, 759–770 (2006).

    CAS  PubMed  Google Scholar 

  53. Yang, J. et al. β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology 60, 964–976 (2014).

    CAS  PubMed  Google Scholar 

  54. Planas-Paz, L. et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat. Cell Biol. 18, 467–479 (2016).

    CAS  PubMed  Google Scholar 

  55. Sekine, S., Lan, B. Y., Bedolli, M., Feng, S. & Hebrok, M. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology 43, 817–825 (2006).

    CAS  PubMed  Google Scholar 

  56. Cordi, S. et al. Role of β-catenin in development of bile ducts. Differentiation 91, 42–49 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hayward, P., Kalmar, T. & Martinez Arias, A. Wnt/Notch signalling and information processing during development. Development 135, 411–424 (2008).

    CAS  PubMed  Google Scholar 

  58. So, J. et al. Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating notch activity. Hepatology 67, 2352–2366 (2018).

    CAS  PubMed  Google Scholar 

  59. Clotman, F. et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev. 19, 1849–1854 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, W. et al. TGFβ signaling controls intrahepatic bile duct development may through regulating the Jagged1-Notch-Sox9 signaling axis. J. Cell Physiol. 233, 5780–5791 (2018).

    CAS  PubMed  Google Scholar 

  61. Miyaoka, Y. et al. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr. Biol. 22, 1166–1175 (2012).

    CAS  PubMed  Google Scholar 

  62. Yanger, K. et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340–349 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schaub, J. R., Malato, Y., Gormond, C. & Willenbring, H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8, 933–939 (2014). This study, with reference 62, reports that hepatocytes, rather than liver stem cells, are the sources of liver mass regeneration in mouse models.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, F. et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 26, 27–33.e4 (2020).

    CAS  PubMed  Google Scholar 

  65. Sun, T. et al. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell 26, 97–107.e6 (2020).

    CAS  PubMed  Google Scholar 

  66. Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Font-Burgada, J. et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162, 766–779 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, S. et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 556, 244–248 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tarlow, B. D., Finegold, M. J. & Grompe, M. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology 60, 278–289 (2014).

    CAS  PubMed  Google Scholar 

  71. Rodrigo-Torres, D. et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology 60, 1367–1377 (2014).

    CAS  PubMed  Google Scholar 

  72. Jors, S. et al. Lineage fate of ductular reactions in liver injury and carcinogenesis. J. Clin. Invest. 125, 2445–2457 (2015). Together with references 70 and 71, this study shows that ductular reaction or the ‘oval cell response’ predominantly derives from cholangiocytes.

    PubMed  PubMed Central  Google Scholar 

  73. Russell, J. O. et al. Hepatocyte-specific beta-catenin deletion during severe liver injury provokes cholangiocytes to differentiate into hepatocytes. Hepatology 69, 742–759 (2019).

    CAS  PubMed  Google Scholar 

  74. Lu, W. Y. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17, 971–983 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Raven, A. et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547, 350–354 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Monga, S. P., Pediaditakis, P., Mule, K., Stolz, D. B. & Michalopoulos, G. K. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology 33, 1098–1109 (2001).

    CAS  PubMed  Google Scholar 

  77. Nelsen, C. J., Rickheim, D. G., Timchenko, N. A., Stanley, M. W. & Albrecht, J. H. Transient expression of cyclin D1 is sufficient to promote hepatocyte replication and liver growth in vivo. Cancer Res. 61, 8564–8568 (2001).

    CAS  PubMed  Google Scholar 

  78. Ochoa, B. et al. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 51, 1712–1723 (2010).

    CAS  PubMed  Google Scholar 

  79. Grijalva, J. L. et al. Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G196–G204 (2014).

    CAS  PubMed  Google Scholar 

  80. Lu, L., Finegold, M. J. & Johnson, R. L. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp. Mol. Med. 50, e423 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Kim, A. R. et al. TAZ stimulates liver regeneration through interleukin-6-induced hepatocyte proliferation and inhibition of cell death after liver injury. FASEB J. 33, 5914–5923 (2019).

    PubMed  Google Scholar 

  82. Swiderska-Syn, M. et al. Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology 64, 232–244 (2016).

    CAS  PubMed  Google Scholar 

  83. Langiewicz, M. et al. Hedgehog pathway mediates early acceleration of liver regeneration induced by a novel two-staged hepatectomy in mice. J. Hepatol. 66, 560–570 (2017).

    CAS  PubMed  Google Scholar 

  84. Kohler, C. et al. Expression of Notch-1 and its ligand Jagged-1 in rat liver during liver regeneration. Hepatology 39, 1056–1065 (2004).

    PubMed  Google Scholar 

  85. Wang, L. et al. Disruption of the transcription factor recombination signal-binding protein-Jkappa (RBP-J) leads to veno-occlusive disease and interfered liver regeneration in mice. Hepatology 49, 268–277 (2009).

    PubMed  Google Scholar 

  86. Cuervo, H. et al. Endothelial notch signaling is essential to prevent hepatic vascular malformations in mice. Hepatology 64, 1302–1316 (2016).

    CAS  PubMed  Google Scholar 

  87. Duan, J. L. et al. Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology 68, 677–690 (2018).

    CAS  PubMed  Google Scholar 

  88. Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes. Dev. 27, 719–724 (2013). This study shows that Notch promotes transdifferentiation of mature hepatocytes into cholangiocytes in several mouse models of liver injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Morell, C. M. et al. Notch signaling and progenitor/ductular reaction in steatohepatitis. PLoS ONE 12, e0187384 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Walter, T. J., Vanderpool, C., Cast, A. E. & Huppert, S. S. Intrahepatic bile duct regeneration in mice does not require Hnf6 or Notch signaling through Rbpj. Am. J. Pathol. 184, 1479–1488 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schaub, J. R. et al. De novo formation of the biliary system by TGFbeta-mediated hepatocyte transdifferentiation. Nature 557, 247–251 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Pepe-Mooney, B. J. et al. Single-cell analysis of the liver epithelium reveals dynamic heterogeneity and an essential role for YAP in homeostasis and regeneration. Cell Stem Cell https://doi.org/10.1016/j.stem.2019.04.004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Planas-Paz, L. et al. YAP, but not RSPO-LGR4/5, signaling in biliary epithelial cells promotes a ductular reaction in response to liver injury. Cell Stem Cell 25, 39–53.e10 (2019).

    CAS  PubMed  Google Scholar 

  95. Sato, K. et al. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology 69, 420–430 (2019).

    PubMed  Google Scholar 

  96. Tarlow, B. D. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605–618 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Deng, X. et al. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23, 114–122.e3 (2018).

    CAS  PubMed  Google Scholar 

  98. Limaye, P. B. et al. Expression of specific hepatocyte and cholangiocyte transcription factors in human liver disease and embryonic development. Lab. Invest. 88, 865–872 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Grompe, M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 10, 453–460 (1995).

    CAS  PubMed  Google Scholar 

  100. Miyamura, N. et al. YAP determines the cell fate of injured mouse hepatocytes in vivo. Nat. Commun. 8, 16017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wree, A., Broderick, L., Canbay, A., Hoffman, H. M. & Feldstein, A. E. From NAFLD to NASH to cirrhosis - new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol. 10, 627–636 (2013).

    CAS  PubMed  Google Scholar 

  102. Buzzetti, E., Pinzani, M. & Tsochatzis, E. A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65, 1038–1048 (2016).

    CAS  PubMed  Google Scholar 

  103. Cusi, K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 142, 711–725.e6 (2012).

    CAS  PubMed  Google Scholar 

  104. Neuschwander-Tetri, B. A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52, 774–788 (2010).

    PubMed  Google Scholar 

  105. Hardy, T., Oakley, F., Anstee, Q. M. & Day, C. P. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. 11, 451–496 (2016).

    CAS  PubMed  Google Scholar 

  106. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    CAS  PubMed  Google Scholar 

  107. Cordero-Espinoza, L. & Huch, M. The balancing act of the liver: tissue regeneration versus fibrosis. J. Clin. Invest. 128, 85–96 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013). This study revealed HSCs as the predominant contributors of liver fibrosis in mouse models.

    PubMed  Google Scholar 

  109. Asgharpour, A. et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 65, 579–588 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Clapper, J. R. et al. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G483–G495 (2013).

    CAS  PubMed  Google Scholar 

  111. Wolf, M. J. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26, 549–564 (2014).

    CAS  PubMed  Google Scholar 

  112. Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tsuchida, T. et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol. 69, 385–395 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Machado, M. V. & Diehl, A. M. Hedgehog signalling in liver pathophysiology. J. Hepatol. 68, 550–562 (2018).

    CAS  PubMed  Google Scholar 

  115. Sicklick, J. K. et al. Hedgehog signaling maintains resident hepatic progenitors throughout life. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G859–G870 (2006).

    CAS  PubMed  Google Scholar 

  116. Michelotti, G. A. et al. Smoothened is a master regulator of adult liver repair. J. Clin. Invest. 123, 2380–2394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kwon, H. et al. Inhibition of hedgehog signaling ameliorates hepatic inflammation in mice with nonalcoholic fatty liver disease. Hepatology 63, 1155–1169 (2016).

    CAS  PubMed  Google Scholar 

  118. Chung, S. I. et al. Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model. J. Hepatol. 64, 618–627 (2016).

    CAS  PubMed  Google Scholar 

  119. Matz-Soja, M. et al. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis. eLife 5, e13308 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Marbach-Breitruck, E. et al. Tick-Tock Hedgehog-Mutual crosstalk with liver circadian clock promotes liver steatosis. J. Hepatol. 70, 1192–1202 (2019).

    PubMed  Google Scholar 

  121. Guy, C. D. et al. Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatology 55, 1711–1721 (2012).

    CAS  PubMed  Google Scholar 

  122. Jung, Y. et al. Signals from dying hepatocytes trigger growth of liver progenitors. Gut 59, 655–665 (2010).

    CAS  PubMed  Google Scholar 

  123. Guy, C. D., Suzuki, A., Abdelmalek, M. F., Burchette, J. L. & Diehl, A. M. Treatment response in the PIVENS trial is associated with decreased Hedgehog pathway activity. Hepatology 61, 98–107 (2015). This study, with reference 121, shows that Hedgehog pathway activation is associated with disease severity and treatment response in patients with NASH.

    CAS  PubMed  Google Scholar 

  124. Lee, Y. A. et al. Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap. Nat. Commun. 9, 4962 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. Manmadhan, S. & Ehmer, U. Hippo signaling in the liver — a long and ever-expanding story. Front. Cell Dev. Biol. 7, 33 (2019).

    PubMed  PubMed Central  Google Scholar 

  126. Mannaerts, I. et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J. Hepatol. 63, 679–688 (2015).

    CAS  PubMed  Google Scholar 

  127. Martin, K. et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun. 7, 12502 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Du, K. et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology 154, 1465–1479.e13 (2018).

    CAS  PubMed  Google Scholar 

  129. Machado, M. V. et al. Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. J. Hepatol. 63, 962–970 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Russell, J. O. & Monga, S. P. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annu. Rev. Pathol. 13, 351–378 (2018).

    CAS  PubMed  Google Scholar 

  131. Go, G. W. et al. The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue. Cell Metab. 19, 209–220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lehwald, N. et al. β-catenin regulates hepatic mitochondrial function and energy balance in mice. Gastroenterology 143, 754–764 (2012).

    CAS  PubMed  Google Scholar 

  133. Liu, H. et al. Wnt signaling regulates hepatic metabolism. Sci. Signal. 4, ra6 (2011).

    PubMed  PubMed Central  Google Scholar 

  134. Kordes, C., Sawitza, I. & Haussinger, D. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochem. Biophys. Res. Commun. 367, 116–123 (2008).

    CAS  PubMed  Google Scholar 

  135. Ge, W. S. et al. β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation. Mol. Med. Rep. 9, 2145–2151 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ni, M. M. et al. Novel Insights on Notch signaling pathways in liver fibrosis. Eur. J. Pharmacol. 826, 66–74 (2018).

    CAS  PubMed  Google Scholar 

  137. Pajvani, U. B. et al. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat. Med. 17, 961–967 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pajvani, U. B. et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat. Med. 19, 1055–1060 (2013). References 137 and 138 show that, in mature hepatocytes, Notch sits at the bifurcation of insulin signalling to regulate glucose and lipid metabolism.

    Google Scholar 

  139. Kitamura, T. et al. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J. Clin. Invest. 117, 2477–2485 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Valenti, L. et al. Hepatic notch signaling correlates with insulin resistance and nonalcoholic fatty liver disease. Diabetes 62, 4052–4062 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. He, F. et al. Myeloid-specific disruption of recombination signal binding protein Jkappa ameliorates hepatic fibrosis by attenuating inflammation through cylindromatosis in mice. Hepatology 61, 303–314 (2015).

    CAS  PubMed  Google Scholar 

  142. Xu, J. et al. NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J. Clin. Invest. 125, 1579–1590 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Chen, Y. et al. Inhibition of Notch signaling by a gamma-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS ONE 7, e46512 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen, Y. X., Weng, Z. H. & Zhang, S. L. Notch3 regulates the activation of hepatic stellate cells. World J. Gastroenterol. 18, 1397–1403 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Xie, G. et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology 58, 1801–1813 (2013).

    CAS  PubMed  Google Scholar 

  146. Yang, Y. M. et al. Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci. Transl Med. 11, eaat9284 (2019).

    CAS  PubMed  Google Scholar 

  147. Ouchi, R. et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 30, 374–384.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, S. et al. RNA binding proteins control transdifferentiation of hepatic stellate cells into myofibroblasts. Cell Physiol. Biochem. 48, 1215–1229 (2018).

    CAS  PubMed  Google Scholar 

  149. Hyun, J. et al. Dysregulated activation of fetal liver programme in acute liver failure. Gut 68, 1076–1087 (2019).

    CAS  PubMed  Google Scholar 

  150. Younossi, Z. et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin. Gastroenterol. Hepatol. 17, 748–755.e3 (2019).

    PubMed  Google Scholar 

  151. Younossi, Z. M. et al. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology 62, 1723–1730 (2015).

    CAS  PubMed  Google Scholar 

  152. Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O. & Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 (2019). This review systemically discusses the epidemiology, pathogenesis and clinical management and diagnosis of NASH-induced HCC.

    PubMed  Google Scholar 

  153. Zender, S. et al. A critical role for notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell 23, 784–795 (2013).

    CAS  PubMed  Google Scholar 

  154. Villanueva, A. et al. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology 143, 1660–1669.e7 (2012).

    CAS  PubMed  Google Scholar 

  155. Cox, A. G. et al. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat. Cell Biol. 18, 886–896 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Yuan, W. C. et al. NUAK2 is a critical YAP target in liver cancer. Nat. Commun. 9, 4834 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Kim, W. et al. Hepatic Hippo signaling inhibits protumoural microenvironment to suppress hepatocellular carcinoma. Gut 67, 1692–1703 (2018).

    CAS  PubMed  Google Scholar 

  158. Hagenbeek, T. J. et al. The Hippo pathway effector TAZ induces TEAD-dependent liver inflammation and tumors. Sci. Signal. 11, eaaj1757 (2018).

    PubMed  Google Scholar 

  159. Senni, N. et al. β-catenin-activated hepatocellular carcinomas are addicted to fatty acids. Gut 68, 322–334 (2019).

    CAS  PubMed  Google Scholar 

  160. Adebayo Michael, A. O. et al. Inhibiting glutamine-dependent mTORC1 activation ameliorates liver cancers driven by β-catenin mutations. Cell Metab. 29, 1135–1150.e6 (2019).

    CAS  PubMed  Google Scholar 

  161. Ruiz de Galarreta, M. et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9, 1124–1141 (2019).

    CAS  PubMed  Google Scholar 

  162. Sia, D. et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153, 812–826 (2017).

    CAS  PubMed  Google Scholar 

  163. Harding, J. J. et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin. Cancer Res. 25, 2116–2126 (2019).

    CAS  PubMed  Google Scholar 

  164. Kim, W. et al. Hippo signaling interactions with Wnt/beta-catenin and Notch signaling repress liver tumorigenesis. J. Clin. Invest. 127, 137–152 (2017).

    PubMed  Google Scholar 

  165. Febbraio, M. A. et al. Preclinical models for studying NASH-driven HCC: how useful are they? Cell Metab. 29, 18–26 (2019). This review comprehensively summarizes the current knowledge of NASH-driven HCC and existing mouse models to study this disease.

    CAS  PubMed  Google Scholar 

  166. Sparling, D. P. et al. Adipocyte-specific blockade of gamma-secretase, but not inhibition of Notch activity, reduces adipose insulin sensitivity. Mol. Metab. 5, 113–121 (2016).

    CAS  PubMed  Google Scholar 

  167. van Es, J. H. et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    PubMed  Google Scholar 

  168. Kim, K. et al. γ-secretase inhibition lowers plasma triglyceride-rich lipoproteins by stabilizing the LDL receptor. Cell Metab. 27, 816–827.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Richter, L. R. et al. Targeted delivery of notch inhibitor attenuates obesity-induced glucose intolerance and liver fibrosis. ACS Nano 14, 6878–6886 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet. 16, 543–552 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang, X. et al. A therapeutic silencing RNA targeting hepatocyte TAZ prevents and reverses fibrosis in nonalcoholic steatohepatitis in mice. Hepatol. Commun. 3, 1221–1234 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ganesh, S. et al. Direct pharmacological inhibition of beta-catenin by RNA interference in tumors of diverse origin. Mol. Cancer Ther. 15, 2143–2154 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Saggi, H. et al. Loss of hepatocyte β-catenin protects mice from experimental porphyria-associated liver injury. J. Hepatol. 70, 108–117 (2019).

    CAS  PubMed  Google Scholar 

  174. Tao, J. et al. Targeting β-catenin in hepatocellular cancers induced by coexpression of mutant β-catenin and K-Ras in mice. Hepatology 65, 1581–1599 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this work were supported by the American Heart Association (17PRE33120000, to C.Z.) and the NIH (R01 DK103818 and R01 DK119767, to U.B.P.).

Author information

Authors and Affiliations

Authors

Contributions

C.Z. researched data and literature for the article, made a substantial contribution to the discussion of content, wrote the article, and reviewed/edited the manuscript before submission. U.B.P. made a substantial contribution to the discussion of content, wrote the article and reviewed/edited the manuscript before submission. I.T. and R.F.S. made a substantial contribution to the discussion of content and reviewed the manuscript before submission.

Corresponding author

Correspondence to Utpal B. Pajvani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks U. Apte, X. Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Tabas, I., Schwabe, R.F. et al. Maladaptive regeneration — the reawakening of developmental pathways in NASH and fibrosis. Nat Rev Gastroenterol Hepatol 18, 131–142 (2021). https://doi.org/10.1038/s41575-020-00365-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-00365-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing