Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Immune cell dysregulation as a mediator of fibrosis in systemic sclerosis

Abstract

Systemic sclerosis (SSc) is a destructive connective tissue disease characterized by dysregulation of the immune system and fibrosis in the skin and internal organs. The pathogenesis of SSc is complex and remains to be determined. So far, limited specific disease-modifying treatments are available for the effective control of fibrosis in patients with SSc. Studies from the past few years hint at the importance of immune dysfunctions, including the dysregulation of innate and adaptive immune cells, as well as the aberrant secretion of inflammatory and fibrotic cytokines, in the pathogenesis of SSc fibrosis. In this Review, we summarize the most pertinent findings concerning the involvement of dysregulated immune responses in fibrosis of the skin and lungs in SSc and highlight the current and potential immune-based targets for SSc therapeutics.

Key points

  • Immune abnormalities, including aberrantly activated immune cells and overproduction of pro-inflammatory and pro-fibrotic molecules, are the main hallmarks of systemic sclerosis (SSc) pathogenesis.

  • Advances in our knowledge of the immune cells and mediators in SSc fibrosis have revealed an increasing number of possible treatment targets.

  • Clinical trial data suggest that targeting immune cell types and cytokines involved in fibrosis has beneficial effects.

  • Tocilizumab, an antibody that targets the IL-6 receptor, is now approved for the treatment of SSc-associated interstitial lung disease owing to its effectiveness in preserving pulmonary function.

  • The high heterogeneity of the immune phenotypes that occur in SSc might contribute to the limited effect of some immune-targeted therapies, which might be overcome by combined or individualized therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roles of immune cells in the pathogenesis of SSc fibrosis.

Similar content being viewed by others

References

  1. Brown, M. & O’Reilly, S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin. Exp. Immunol. 195, 310–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, S., Li, Q., Wu, H. & Lu, Q. The pathogenic role of innate lymphoid cells in autoimmune-related and inflammatory skin diseases. Cell Mol. Immunol. 17, 335–346 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pillai, S. T and B lymphocytes in fibrosis and systemic sclerosis. Curr. Opin. Rheumatol. 31, 576–581 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Ah Kioon, M. D. et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci. Transl. Med. 10, eaam8458 (2018).

    Article  PubMed  Google Scholar 

  5. Korman, B. Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl. Res. 209, 77–89 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shima, Y. Cytokines involved in the pathogenesis of SSc and problems in the development of anti-cytokine therapy. Cells 10, 1104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tashkin, D. P. et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir. Med. 4, 708–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Satoshi Ebata, A. Y. et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): a double-blind, investigator-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. 3, e489–e497 (2021).

    Article  Google Scholar 

  9. Khanna, D. et al. Systemic sclerosis-associated interstitial lung disease: how to incorporate two food and drug administration-approved therapies in clinical practice. Arthritis Rheumatol. 74, 13–27 (2021).

    Article  PubMed  Google Scholar 

  10. Khanna, D. et al. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 8, 963–974 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Stifano, G. et al. Skin gene expression is prognostic for the trajectory of skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 70, 912–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Toledo, D. M. & Pioli, P. A. Macrophages in systemic sclerosis: novel insights and therapeutic implications. Curr. Rheumatol. Rep. 21, 31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Skaug, B. et al. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann. Rheum. Dis. 79, 379–386 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Bhandari, R. et al. Profibrotic activation of human macrophages in systemic sclerosis. Arthritis Rheumatol. 72, 1160–1169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frantz, C., Pezet, S., Avouac, J. & Allanore, Y. Soluble CD163 as a potential biomarker in systemic sclerosis. Dis. Markers 2018, 8509583 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ototake, Y. et al. Downregulated IRF8 in monocytes and macrophages of patients with systemic sclerosis may aggravate the fibrotic phenotype. J. Invest. Dermatol. 141, 1954–1963 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Lerbs, T. et al. CD47 prevents the elimination of diseased fibroblasts in scleroderma. JCI Insight 5, e140458 (2020).

    Article  PubMed Central  Google Scholar 

  18. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Xue, D. et al. Expansion of Fcγ receptor IIIa-positive macrophages, ficolin 1-positive monocyte-derived dendritic cells, and plasmacytoid dendritic cells associated with severe skin disease in systemic sclerosis. Arthritis Rheumatol. 74, 329–341 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Papazoglou, A. et al. Epigenetic regulation of profibrotic macrophages in systemic sclerosis- associated interstitial lung disease. Arthritis Rheumatol. https://doi.org/10.1002/art.42286 (2022).

    Article  PubMed  Google Scholar 

  22. Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54, 1802441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Budi, E. H., Schaub, J. R., Decaris, M., Turner, S. & Derynck, R. TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities. J. Pathol. 254, 358–373 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Valenzi, E. et al. Disparate interferon signaling and shared aberrant basaloid cells in single-cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Front. Immunol. 12, 595811 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao, X. et al. Osteopontin links myeloid activation and disease progression in systemic sclerosis. Cell Rep. Med. 1, 100140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhattacharyya, S. et al. Toll-like receptor 4 signaling augments transforming growth factor-β responses: a novel mechanism for maintaining and amplifying fibrosis in scleroderma. Am. J. Pathol. 182, 192–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhattacharyya, S. et al. Tenascin-C drives persistence of organ fibrosis. Nat. Commun. 7, 11703 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Piccinini, A. M., Zuliani-Alvarez, L., Lim, J. M. & Midwood, K. S. Distinct microenvironmental cues stimulate divergent TLR4-mediated signaling pathways in macrophages. Sci. Signal. 9, ra86 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Frasca, L. & Lande, R. Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clin. Exp. Immunol. 201, 14–24 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Q. et al. Chromatin accessibility landscapes of skin cells in systemic sclerosis nominate dendritic cells in disease pathogenesis. Nat. Commun. 11, 5843 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kafaja, S. et al. pDCs in lung and skin fibrosis in a bleomycin-induced model and patients with systemic sclerosis. JCI Insight 3, e98380 (2018).

    Article  PubMed Central  Google Scholar 

  33. Gur, C. et al. LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell 185, 1373–1388 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Ross, R. L. et al. Targeting human plasmacytoid dendritic cells through BDCA2 prevents skin inflammation and fibrosis in a novel xenotransplant mouse model of scleroderma. Ann. Rheum. Dis. 80, 920–929 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. O’Reilly, S. Epigenetic regulation of RUNX3 in systemic sclerosis pathogenesis: time to target? Ann. Rheum. Dis. 78, 1149–1150 (2019).

    Article  PubMed  Google Scholar 

  36. Affandi, A. J. et al. Low RUNX3 expression alters dendritic cell function in patients with systemic sclerosis and contributes to enhanced fibrosis. Ann. Rheum. Dis. 78, 1249–1259 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Carvalheiro, T., Zimmermann, M., Radstake, T. & Marut, W. Novel insights into dendritic cells in the pathogenesis of systemic sclerosis. Clin. Exp. Immunol. 201, 25–33 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Bon, L. et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 370, 433–443 (2014).

    Article  PubMed  Google Scholar 

  39. Eloranta, M. L. et al. Type I interferon system activation and association with disease manifestations in systemic sclerosis. Ann. Rheum. Dis. 69, 1396–1402 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Lande, R. et al. Anti-CXCL4 antibody reactivity is present in systemic sclerosis (SSc) and correlates with the SSc type I interferon signature. Int. J. Mol. Sci. 21, 5102 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  41. Bagher, M. et al. Crosstalk between mast cells and lung fibroblasts is modified by alveolar extracellular matrix and influences epithelial migration. Int. J. Mol. Sci. 22, 506 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  42. Levick, S. P. & Widiapradja, A. Mast cells: key contributors to cardiac fibrosis. Int. J. Mol. Sci. 19, 231 (2018).

    Article  PubMed Central  Google Scholar 

  43. Bagnato, G. et al. Mastocytosis and systemic sclerosis: a clinical association. Clin. Mol. Allergy 14, 13 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Frigui, M. et al. Telangiectasic mastocytosis with systemic sclerosis. Presse Med. 42, 902–904 (2013).

    Article  PubMed  Google Scholar 

  45. van Caam, A., Vonk, M., van den Hoogen, F., van Lent, P. & van der Kraan, P. Unraveling SSc pathophysiology; the myofibroblast. Front. Immunol. 9, 2452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Del Rio, C. et al. VCE-004.3, a cannabidiol aminoquinone derivative, prevents bleomycin-induced skin fibrosis and inflammation through PPARγ- and CB2 receptor-dependent pathways. Br. J. Pharm. 175, 3813–3831 (2018).

    Article  Google Scholar 

  47. Aldenborg, F., Nilsson, K., Jarlshammar, B., Bjermer, L. & Enerback, L. Mast cells and biogenic amines in radiation-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 8, 112–117 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Dees, C. et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J. Exp. Med. 208, 961–972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sadiq, A. et al. The role of serotonin during skin healing in post-thermal injury. Int. J. Mol. Sci. 19, 1034 (2018).

    Article  PubMed Central  Google Scholar 

  50. Hatamochi, A., Ueki, H., Mauch, C. & Krieg, T. Effect of histamine on collagen and collagen m-RNA production in human skin fibroblasts. J. Dermatol. Sci. 2, 407–412 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Raker, V. et al. Early inflammatory players in cutaneous fibrosis. J. Dermatol. Sci. 87, 228–235 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Gregory, A. D. et al. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J. Leukoc. Biol. 98, 143–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takemasa, A., Ishii, Y. & Fukuda, T. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice. Eur. Respir. J. 40, 1475–1482 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Didier, K. et al. Neutrophil extracellular traps generation relates with early stage and vascular complications in systemic sclerosis. J. Clin. Med. 9, 2136 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  55. Chrysanthopoulou, A. et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J. Pathol. 233, 294–307 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Herrero-Cervera, A., Soehnlein, O. & Kenne, E. Neutrophils in chronic inflammatory diseases. Cell Mol. Immunol. 19, 177–191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Henriques, A. et al. Subset-specific alterations in frequencies and functional signatures of γδ T cells in systemic sclerosis patients. Inflamm. Res. 65, 985–994 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Gumkowska-Sroka, O. et al. Cytometric characterization of main immunocompetent cells in patients with systemic sclerosis: relationship with disease activity and type of immunosuppressive treatment. J. Clin. Med 8, 625 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  59. Wohlfahrt, T. et al. Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis. Ann. Rheum. Dis. 75, 623–626 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Markovits, N. et al. Anti-fibrotic characteristics of Vγ9+ γδ T cells in systemic sclerosis. Clin. Exp. Rheumatol. 34, 23–29 (2016).

    PubMed  Google Scholar 

  61. Gianchecchi, E., Delfino, D. V. & Fierabracci, A. Natural killer cells: potential biomarkers and therapeutic target in autoimmune diseases? Front. Immunol. 12, 616853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pecher, A. C. et al. Invariant natural killer T cells are functionally impaired in patients with systemic sclerosis. Arthritis Res. Ther. 21, 212 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chizzolini, C., Parel, Y., Scheja, A. & Dayer, J. M. Polarized subsets of human T-helper cells induce distinct patterns of chemokine production by normal and systemic sclerosis dermal fibroblasts. Arthritis Res. Ther. 8, R10 (2006).

    Article  PubMed  Google Scholar 

  64. Gasparini, G., Cozzani, E. & Parodi, A. Interleukin-4 and interleukin-13 as possible therapeutic targets in systemic sclerosis. Cytokine 125, 154799 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Gieseck, R. L. 3rd, Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Truchetet, M. E., Brembilla, N. C., Montanari, E., Allanore, Y. & Chizzolini, C. Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Res. Ther. 13, R166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tang, J., Lei, L., Pan, J., Zhao, C. & Wen, J. Higher levels of serum interleukin-35 are associated with the severity of pulmonary fibrosis and Th2 responses in patients with systemic sclerosis. Rheumatol. Int. 38, 1511–1519 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, X., Yang, J., Xing, X., Wan, L. & Li, M. Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction. Arthritis Res. Ther. 16, R4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xing, X., Li, A., Tan, H. & Zhou, Y. IFN-γ+ IL-17+ Th17 cells regulate fibrosis through secreting IL-21 in systemic scleroderma. J. Cell. Mol. Med. 24, 13600–13608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shenderov, K., Collins, S. L., Powell, J. D. & Horton, M. R. Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J. Clin. Invest. 131, e143226 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  71. Frantz, C., Auffray, C., Avouac, J. & Allanore, Y. Regulatory T cells in systemic sclerosis. Front. Immunol. 9, 2356 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ugor, E. et al. Increased proportions of functionally impaired regulatory T cell subsets in systemic sclerosis. Clin. Immunol. 184, 54–62 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Taylor, D. K. et al. T follicular helper-like cells contribute to skin fibrosis. Sci. Transl. Med. 10, eaaf5307 (2018).

    Article  PubMed  Google Scholar 

  74. Gaydosik, A. M. et al. Single-cell transcriptome analysis identifies skin-specific T-cell responses in systemic sclerosis. Ann. Rheum. Dis. 80, 1453–1460 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Worrell, J. C. & O’Reilly, S. Bi-directional communication: conversations between fibroblasts and immune cells in systemic sclerosis. J. Autoimmun. 113, 102526 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Meng, M. et al. The fibrosis and immunological features of hypochlorous acid induced mouse model of systemic sclerosis. Front. Immunol. 10, 1861 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Benyamine, A. et al. Natural killer cells exhibit a peculiar phenotypic profile in systemic sclerosis and are potent inducers of endothelial microparticles release. Front. Immunol. 9, 1665 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Toldi, G., Legany, N., Ocsovszki, I. & Balog, A. Calcium influx kinetics and the characteristics of potassium channels in peripheral T lymphocytes in systemic sclerosis. Pathobiology 87, 311–316 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Park, M. J. et al. IL-1-IL-17 Signaling axis contributes to fibrosis and inflammation in two different murine models of systemic sclerosis. Front. Immunol. 9, 1611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lei, L. et al. Th17 cells and IL-17 promote the skin and lung inflammation and fibrosis process in a bleomycin-induced murine model of systemic sclerosis. Clin. Exp. Rheumatol. 34, 14–22 (2016).

    PubMed  Google Scholar 

  81. Murata, M. et al. Clinical association of serum interleukin-17 levels in systemic sclerosis: is systemic sclerosis a Th17 disease? J. Dermatol. Sci. 50, 240–242 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03957681 (2022).

  83. Takemichi, F., Ayumi Yoshizaki, H. & Shinichi, S. Efficacy and safety of subcutaneous brodalumab, a fully human anti-IL-17RA monoclonal antibody, for systemic sclerosis with moderate-to-severe skin thickening: a multicenter, randomized, placebo-controlled, double-blind phase 3 study. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2022-eular.2519 (2022).

    Article  Google Scholar 

  84. Hasegawa, M., Fujimoto, M., Kikuchi, K. & Takehara, K. Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J. Rheumatol. 24, 328–332 (1997).

    CAS  PubMed  Google Scholar 

  85. Fuschiotti, P., Medsger, T. A. Jr & Morel, P. A. Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis. Arthritis Rheum. 60, 1119–1128 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Hashimoto, S., Gon, Y., Takeshita, I., Maruoka, S. & Horie, T. IL-4 and IL-13 induce myofibroblastic phenotype of human lung fibroblasts through c-Jun NH2-terminal kinase-dependent pathway. J. Allergy Clin. Immunol. 107, 1001–1008 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Cascio, S. et al. 14-3-3z sequesters cytosolic T-bet, upregulating IL-13 levels in TC2 and CD8+ lymphocytes from patients with scleroderma. J. Allergy Clin. Immunol. 142, 109–119.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Almanzar, G. et al. Memory CD4+ T cells lacking expression of CCR7 promote pro-inflammatory cytokine production in patients with diffuse cutaneous systemic sclerosis. Eur. J. Dermatol. 29, 468–476 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Fuschiotti, P., Larregina, A. T., Ho, J., Feghali-Bostwick, C. & Medsger, T. A. Jr Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum. 65, 236–246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Matsushita, T. Regulatory and effector B cells: friends or foes? J. Dermatol. Sci. 93, 2–7 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Matsushita, T. et al. BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and effector B cell balance. Sci. Adv. 4, eaas9944 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Melissaropoulos, K. & Daoussis, D. B cells in systemic sclerosis: from pathophysiology to treatment. Clin. Rheumatol. 40, 2621–2631 (2021).

    Article  PubMed  Google Scholar 

  93. Yoshizaki, A. et al. CD19 regulates skin and lung fibrosis via Toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am. J. Pathol. 172, 1650–1663 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saito, E. et al. CD19-dependent B lymphocyte signaling thresholds influence skin fibrosis and autoimmunity in the tight-skin mouse. J. Clin. Invest. 109, 1453–1462 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021).

    Article  PubMed  Google Scholar 

  96. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. https://doi.org/10.1038/s41591-022-02017-5 (2022).

    Article  PubMed  Google Scholar 

  97. Zhao, C. et al. CD22 and CD72 contribute to the development of scleroderma in a murine model. J. Dermatol. Sci. 97, 66–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Schneider, P. et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747–1756 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Francois, A. et al. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res. Ther. 15, R168 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Laurent, P. et al. TGFβ promotes low IL10-producing ILC2 with profibrotic ability involved in skin fibrosis in systemic sclerosis. Ann. Rheum. Dis. 80, 1594–1603 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Le Huu, D. et al. Donor-derived regulatory B cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood 121, 3274–3283 (2013).

    Article  PubMed  Google Scholar 

  102. Taher, T. E. et al. Association of defective regulation of autoreactive interleukin-6-producing transitional B lymphocytes with disease in patients with systemic sclerosis. Arthritis Rheumatol. 70, 450–461 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Grassegger, A. et al. Interferon-gamma in the treatment of systemic sclerosis: a randomized controlled multicentre trial. Br. J. Dermatol. 139, 639–648 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Numajiri, H. et al. B cell depletion inhibits fibrosis via suppression of profibrotic macrophage differentiation in a mouse model of systemic sclerosis. Arthritis Rheumatol. 73, 2086–2095 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Volkmann, E. R. & Varga, J. Emerging targets of disease-modifying therapy for systemic sclerosis. Nat. Rev. Rheumatol. 15, 208–224 (2019).

    Article  PubMed  Google Scholar 

  106. Fallet, B. & Walker, U. A. Current immunosuppressive and antifibrotic therapies of systemic sclerosis and emerging therapeutic strategies. Expert. Rev. Clin. Pharmacol. 13, 1203–1218 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Langford, C. A. et al. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of giant cell arteritis. Arthritis Rheumatol. 69, 837–845 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Castellví, I. et al. Safety and effectiveness of abatacept in systemic sclerosis: the EUSTAR experience. Semin. Arthritis Rheum. 50, 1489–1493 (2020).

    Article  PubMed  Google Scholar 

  109. Chakravarty, E. F. et al. Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Res. Ther. 17, 159 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ponsoye, M. et al. Treatment with abatacept prevents experimental dermal fibrosis and induces regression of established inflammation-driven fibrosis. Ann. Rheum. Dis. 75, 2142–2149 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Khanna, D. et al. Abatacept in early diffuse cutaneous systemic sclerosis: results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol. 72, 125–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Elhai, M. et al. Outcomes of patients with systemic sclerosis treated with rituximab in contemporary practice: a prospective cohort study. Ann. Rheum. Dis. 78, 979–987 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Ebata, S. et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): a double-blind, investigator-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. 3, e489–e497 (2021).

    Article  Google Scholar 

  114. Zamanian, R. T. et al. Safety and efficacy of B-cell depletion with rituximab for the treatment of systemic sclerosis-associated pulmonary arterial hypertension: a multicenter, double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 204, 209–221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Streicher, K. et al. Baseline plasma cell gene signature predicts improvement in systemic sclerosis skin scores following treatment with inebilizumab (MEDI-551) and correlates with disease activity in systemic lupus erythematosus and chronic obstructive pulmonary disease. Arthritis Rheumatol. 70, 2087–2095 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Schiopu, E. et al. Safety and tolerability of an anti-CD19 monoclonal antibody, MEDI-551, in subjects with systemic sclerosis: a phase I, randomized, placebo-controlled, escalating single-dose study. Arthritis Res. Ther. 18, 131 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Singh, J. A., Shah, N. P. & Mudano, A. S. Belimumab for systemic lupus erythematosus. Cochrane Database Syst. Rev. 2, CD010668 (2021).

    PubMed  Google Scholar 

  118. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Blair, H. A. & Duggan, S. T. Belimumab: a review in systemic lupus erythematosus. Drugs 78, 355–366 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Gordon, J. K. et al. Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled, pilot trial. Arthritis Rheumatol. 70, 308–316 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Yao, X. et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther. 141, 125–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Aung, W. W. et al. Immunomodulating role of the JAKs inhibitor tofacitinib in a mouse model of bleomycin-induced scleroderma. J. Dermatol. Sci. 101, 174–184 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Rueda, B. et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum. Mol. Genet. 18, 2071–2077 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Allanore, Y. et al. A randomised, double-blind, placebo-controlled, 24-week, phase II, proof-of-concept study of romilkimab (SAR156597) in early diffuse cutaneous systemic sclerosis. Ann. Rheum. Dis. 79, 1600–1607 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Frangogiannis, N. Transforming growth factor-β in tissue fibrosis. J. Exp. Med. 217, e20190103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gyorfi, A. H., Matei, A. E. & Distler, J. H. W. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol. 68-69, 8–27 (2018).

    Article  PubMed  Google Scholar 

  127. Guo, J. et al. Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice. Eur. J. Pharmacol. 864, 172712 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Oude Munnink, T. H. et al. PET with the 89Zr-labeled transforming growth factor-beta antibody fresolimumab in tumor models. J. Nucl. Med. 52, 2001–2008 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest. 125, 2795–2807 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  130. de Castro, L. L., Lopes-Pacheco, M., Weiss, D. J., Cruz, F. F. & Rocco, P. R. M. Current understanding of the immunosuppressive properties of mesenchymal stromal cells. J. Mol. Med. 97, 605–618 (2019).

    Article  PubMed  Google Scholar 

  131. Song, N., Scholtemeijer, M. & Shah, K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol. Sci. 41, 653–664 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kim, J. & Hematti, P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp. Hematol. 37, 1445–1453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Di Nicola, M. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99, 3838–3843 (2002).

    Article  PubMed  Google Scholar 

  134. Zhang, H. et al. Sustained benefit from combined plasmapheresis and allogeneic mesenchymal stem cells transplantation therapy in systemic sclerosis. Arthritis Res. Ther. 19, 165 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Khanna, D. et al. Adipose-derived regenerative cell transplantation for the treatment of hand dysfunction in systemic sclerosis: a randomized clinical trial. Arthritis Rheumatol. 74, 1399–1408 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Alexander, T., Greco, R. & Snowden, J. A. Hematopoietic stem cell transplantation for autoimmune disease. Annu. Rev. Med. 72, 215–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Servaas, N. H., Spierings, J., Pandit, A. & van Laar, J. M. The role of innate immune cells in systemic sclerosis in the context of autologous hematopoietic stem cell transplantation. Clin. Exp. Immunol. 201, 34–39 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lima-Junior, J. R. et al. Autologous hematopoietic stem cell transplantation restores the suppressive capacity of regulatory B cells in systemic sclerosis patients. Rheumatology 60, 5538–5548 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Gernert, M., Tony, H. P., Schwaneck, E. C., Gadeholt, O. & Schmalzing, M. Autologous hematopoietic stem cell transplantation in systemic sclerosis induces long-lasting changes in B cell homeostasis toward an anti-inflammatory B cell cytokine pattern. Arthritis Res. Ther. 21, 106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tsukamoto, H. et al. Analysis of immune reconstitution after autologous CD34+ stem/progenitor cell transplantation for systemic sclerosis: predominant reconstitution of Th1 CD4+ T cells. Rheumatology 50, 944–952 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Assassi, S. et al. Myeloablation followed by autologous stem cell transplantation normalises systemic sclerosis molecular signatures. Ann. Rheum. Dis. 78, 1371–1378 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Binks, M. et al. Phase I/II trial of autologous stem cell transplantation in systemic sclerosis: procedure related mortality and impact on skin disease. Ann. Rheum. Dis. 60, 577–584 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nash, R. A. et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study. Blood 110, 1388–1396 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. van Laar, J. M. et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 311, 2490–2498 (2014).

    Article  PubMed  Google Scholar 

  145. Vonk, M. C. et al. Long-term follow-up results after autologous haematopoietic stem cell transplantation for severe systemic sclerosis. Ann. Rheum. Dis. 67, 98–104 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Sullivan, K. M. et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N. Engl. J. Med. 378, 35–47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378, 498–506 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Panopoulos, S. T., Tektonidou, M. G., Bournia, V. K., Laskari, K. & Sfikakis, P. P. Outcomes of conventionally-treated systemic sclerosis patients eligible for autologous haematopoietic stem cell transplantation. Clin. Exp. Rheumatol. 39, 29–33 (2021).

    Article  PubMed  Google Scholar 

  149. Kowal-Bielecka, O. et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann. Rheum. Dis. 76, 1327–1339 (2017).

    Article  PubMed  Google Scholar 

  150. Skaug, B. et al. Large-scale analysis of longitudinal skin gene expression in systemic sclerosis reveals relationships of immune cell and fibroblast activity with skin thickness and a trend towards normalisation over time. Ann. Rheum. Dis. 81, 516–523 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhai, X. et al. Treating different diseases with the same method — a traditional Chinese medicine concept analyzed for its biological basis. Front. Pharm. 11, 946 (2020).

    Article  Google Scholar 

  154. Zhang, Z. J. The Synopsis of Golden Chamber. 1st edn., Vol. 1 1–167 (China Medical Science and Technology Press, 2016).

Download references

Acknowledgements

The authors thank Foo Yew Liew for giving advice on this manuscript. The work of the authors is supported by the National Natural Science Foundation of China (32288102 and 82271836).

Author information

Authors and Affiliations

Authors

Contributions

D.F. wrote the article. D.F., B.C., and R.M. provided substantial contributions to discussion of the content. All authors reviewed and/or edited the final manuscript before submission.

Corresponding author

Correspondence to Rong Mu.

Ethics declarations

Competing interests

D.K. receives consulting fees from Acceleron, Actelion, Amgen, Boehringer Ingelheim, Chemomab, CSL Behring, Genentech/Roche, Horizon, Mitsubishi Tanabe Pharma, Paracrine Cell Therapy, Prometheus and Theraly. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, D., Chen, B., Lescoat, A. et al. Immune cell dysregulation as a mediator of fibrosis in systemic sclerosis. Nat Rev Rheumatol 18, 683–693 (2022). https://doi.org/10.1038/s41584-022-00864-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00864-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing