Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A shared accretion instability for black holes and neutron stars

Abstract

Accretion disks around compact objects are expected to enter an unstable phase at high luminosity1. One instability may occur when the radiation pressure generated by accretion modifies the disk viscosity, resulting in the cyclic depletion and refilling of the inner disk on short timescales2. Such a scenario, however, has only been quantitatively verified for a single stellar-mass black hole3,4,5. Although there are hints of these cycles in a few isolated cases6,7,8,9,10, their apparent absence in the variable emission of most bright accreting neutron stars and black holes has been a continuing puzzle11. Here we report the presence of the same multiwavelength instability around an accreting neutron star. Moreover, we show that the variability across the electromagnetic spectrum—from radio to X-ray—of both black holes and neutron stars at high accretion rates can be explained consistently if the accretion disks are unstable, producing relativistic ejections during transitions that deplete or refill the inner disk. Such a new association allows us to identify the main physical components responsible for the fast multiwavelength variability of highly accreting compact objects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiwavelength variability of Swift J1858.
Fig. 2: The unified accretion instability for black holes and neutron stars.
Fig. 3: Radio oscillations modelling.

Similar content being viewed by others

Data availability

All raw data from the Swift J1858 August campaign and GRS 1915+105 Chandra/VLA observations are public and can be downloaded from their archives using the reported codes. All the reduced data from this campaign (including spectroscopic observations, which are not presented here) will be made object of a publication and made accessible (Castro Segura et al. in preparation). Further analysis of the WASP and CHIMERA data is in progress, thus they are available on request to the authors.

References

  1. Lightman, A. P. & Eardley, D. M. Black holes in binary systems: instability of disk accretion. Astrophys. J. 187, L1 (1974).

    Article  ADS  Google Scholar 

  2. Belloni, T., Méndez, M., King, A. R., van der Klis, M. & van Paradijs, J. An unstable central disk in the superluminal black hole X-ray binary GRS 1915+105. Astrophys. J. 479, L145–L148 (1997).

    Article  ADS  Google Scholar 

  3. Janiuk, A., Czerny, B. & Siemiginowska, A. Radiation pressure instability as a variability mechanism in the microquasar GRS 1915+105. Astrophys. J. 542, L33–L36 (2000).

    Article  ADS  Google Scholar 

  4. Nayakshin, S., Rappaport, S. & Melia, F. Time-dependent disk models for the microquasar GRS 1915+105. Astrophys. J. 535, 798–814 (2000).

    Article  ADS  Google Scholar 

  5. Neilsen, J., Remillard, R. A. & Lee, J. C. The physics of the “heartbeat” state of GRS 1915+105. Astrophys. J. 737, 69 (2011).

    Article  ADS  Google Scholar 

  6. Bagnoli, T. & in’t Zand, J. J. M. Discovery of GRS 1915+105 variability patterns in the Rapid Burster. Mon. Not. R. Astron. Soc. 450, L52–L56 (2015).

    Article  ADS  CAS  Google Scholar 

  7. Altamirano, D. et al. The faint “heartbeats” of IGR J17091–3624: an exceptional black hole candidate. Astrophys. J. 742, L17 (2011).

    Article  ADS  Google Scholar 

  8. Janiuk, A. & Czerny, B. On different types of instabilities in black hole accretion discs: implications for X-ray binaries and active galactic nuclei. Mon. Not. R. Astron. Soc. 414, 2186–2194 (2011).

    Article  ADS  Google Scholar 

  9. Janiuk, A., Grzedzielski, M., Capitanio, F. & Bianchi, S. Interplay between heartbeat oscillations and wind outflow in microquasar IGR J17091-3624. Astron. Astrophys. 574, A92 (2015).

    Article  ADS  Google Scholar 

  10. Kimura, M. et al. Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni. Nature 529, 54–58 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Done, C., Wardziński, G. & Gierliński, M. GRS 1915+105: the brightest Galactic black hole. Mon. Not. R. Astron. Soc. 349, 393–403 (2004).

    Article  ADS  CAS  Google Scholar 

  12. Krimm, H. A. et al. Swift reports the detection of a new galactic transient source Swift J1858.6-0814. The Astronomer’s Telegram No. 12151 (2018).

  13. Hare, J. et al. NuSTAR observations of the transient galactic black hole binary candidate Swift J1858.6–0814: a new sibling of V404 Cyg and V4641 Sgr? Astrophys. J. 890, 57 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Koljonen, K. I. I. & Tomsick, J. A. The obscured X-ray binaries V404 Cyg, Cyg X-3, V4641 Sgr, and GRS 1915+105. Astron. Astrophys. 639, A13 (2020).

    Article  ADS  CAS  Google Scholar 

  15. Buisson, D. J. K. et al. Soft X-ray emission lines in the X-ray binary Swift J1858.6–0814 observed with XMM–Newton Reflection Grating Spectrometer: disc atmosphere or wind? Mon. Not. R. Astron. Soc. 498, 68–76 (2020).

    Article  ADS  CAS  Google Scholar 

  16. Muñoz-Darias, T. et al. The changing-look optical wind of the flaring X-ray transient Swift J1858.6-0814. Astrophys. J. 893, L19 (2020).

    Article  ADS  Google Scholar 

  17. Castro Segura, N. et al. A persistent ultraviolet outflow from an accreting neutron star binary transient. Nature 603, 52–57 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. van den Eijnden, J. et al. The variable radio counterpart of Swift J1858.6–0814. Mon. Not. R. Astron. Soc. 496, 4127–4140 (2020).

    Article  ADS  Google Scholar 

  19. Buisson, D. J. K. et al. Dips and eclipses in the X-ray binary Swift J1858.6–0814 observed with NICER. Mon. Not. R. Astron. Soc. 503, 5600–5610 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Buisson, D. J. K. et al. Discovery of thermonuclear (Type I) X-ray bursts in the X-ray binary Swift J1858.6–0814 observed with NICER and NuSTAR. Mon. Not. R. Astron. Soc. 499, 793–803 (2020).

    Article  ADS  CAS  Google Scholar 

  21. Belloni, T., Klein-Wolt, M., Méndez, M., van der Klis, M. & van Paradijs, J. A model-independent analysis of the variability of GRS 1915+105. Astron. Astrophys. 355, 271–290 (2000).

    ADS  Google Scholar 

  22. Fender, R. P. & Pooley, G. G. Infrared synchrotron oscillations in GRS 1915+105. Mon. Not. R. Astron. Soc. 300, 573–576 (1998).

    Article  ADS  Google Scholar 

  23. Eikenberry, S. S., Matthews, K., Morgan, E. H., Remillard, R. A. & Nelson, R. W. Evidence for a disk-jet interaction in the microquasar GRS 1915+105. Astrophys. J. 494, L61–L64 (1998).

    Article  ADS  Google Scholar 

  24. Mirabel, I. F. et al. Accretion instabilities and jet formation in GRS 1915+105. Astron. Astrophys. 330, L9–L12 (1998).

    ADS  Google Scholar 

  25. Tetarenko, A. J. et al. Extreme jet ejections from the black hole X-ray binary V404 Cygni. Mon. Not. R. Astron. Soc. 469, 3141–3162 (2017).

    Article  ADS  CAS  Google Scholar 

  26. Alfonso-Garzón, J. et al. Optical/X-ray correlations during the V404 Cygni June 2015 outburst. Astron. Astrophys. 620, A110 (2018).

    Article  Google Scholar 

  27. Hynes, R. I. et al. Optical and X-ray correlations during the 2015 outburst of the black hole V404 Cyg. Mon. Not. R. Astron. Soc. 487, 60–78 (2019).

    Article  ADS  CAS  Google Scholar 

  28. Dallilar, Y. et al. A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni. Science 358, 1299–1302 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Uemura, M. et al. Optical observation of the 2003 outburst of a black hole X-Ray binary, V4641 Sagittarii. Publ. Astron. Soc. Jpn. 56, 823–829 (2004).

    Article  ADS  CAS  Google Scholar 

  30. Fender, R. P., Bell Burnell, S. J., Williams, P. M. & Webster, A. S. Flaring and quiescent infrared behaviour of Cygnus X-3. Mon. Not. R. Astron. Soc. 283, 798–804 (1996).

    Article  ADS  Google Scholar 

  31. Motta, S. E. et al. The slow heartbeats of an ultraluminous X-ray source in NGC 3621. Astrophys. J. 898, 174 (2020).

    Article  ADS  Google Scholar 

  32. Rhodes, L. et al. Long-term radio monitoring of the neutron star X-ray binary Swift J1858.6–0814. Mon. Not. R. Astron. Soc. 513, 2708–2718 (2022).

    Article  ADS  Google Scholar 

  33. Court, J. M. C. et al. The evolution of X-ray bursts in the ‘bursting pulsar’ GRO J1744–28. Mon. Not. R. Astron. Soc. 481, 2273–2298 (2018).

    Article  ADS  CAS  Google Scholar 

  34. Rothstein, D. M., Eikenberry, S. S. & Matthews, K. Observations of rapid disk-jet interaction in the microquasar GRS 1915+105. Astrophys. J. 626, 991–1005 (2005).

    Article  ADS  CAS  Google Scholar 

  35. Harrison, F. A. et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103 (2013).

    Article  ADS  Google Scholar 

  36. Pirard, J.-F. et al. in Ground-based Instrumentation for Astronomy, Vol. 5492 (eds Moorwood, A. F. M. & Iye, M.) 1763–1772 (SPIE, 2004).

  37. Dhillon, V. S. et al. ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics. Mon. Not. R. Astron. Soc. 378, 825–840 (2007).

    Article  ADS  CAS  Google Scholar 

  38. Eastman, J., Siverd, R. & Gaudi, B. S. Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates. Publ. Astron. Soc. Pac. 122, 935 (2010).

    Article  ADS  Google Scholar 

  39. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI, Vol. 376 (eds Shaw, R. A., Hill, F. & Bell, D. J.) 127–130 (Astronomical Society of the Pacific, 2007).

  40. Gandhi, P. et al. Furiously fast and red: sub-second optical flaring in V404 Cyg during the 2015 outburst peak. Mon. Not. R. Astron. Soc. 459, 554–572 (2016).

    Article  ADS  CAS  Google Scholar 

  41. Baglio, M. C. et al. A wildly flickering jet in the black hole X-ray binary MAXI J1535–571. Astrophys. J. 867, 114 (2018).

    Article  ADS  CAS  Google Scholar 

  42. Edelson, R. A. & Krolik, J. H. The discrete correlation function: a new method for analyzing unevenly sampled variability data. Astrophys. J. 333, 646 (1988).

    Article  ADS  CAS  Google Scholar 

  43. Gandhi, P. et al. Rapid optical and X-ray timing observations of GX 339–4: multicomponent optical variability in the low/hard state. Mon. Not. R. Astron. Soc. 407, 2166–2192 (2010).

    Article  ADS  CAS  Google Scholar 

  44. Paice, J. A. et al. Blue oscillations and rapid red flares in Swift J1858.6-0814 observed with ULTRACAM/NTT. The Astronomer’s Telegram No. 12197 (2018).

  45. Janiuk, A. & Czerny, B. Time-delays between the soft and hard X-ray bands in GRS 1915 + 105. Mon. Not. R. Astron. Soc. 356, 205–216 (2005).

    Article  ADS  CAS  Google Scholar 

  46. O’Brien, K. et al. Echoes in X-ray binaries. Mon. Not. R. Astron. Soc. 334, 426–434 (2002).

    Article  ADS  Google Scholar 

  47. Vincentelli, F. M. et al. Discovery of a thermonuclear Type I X-ray burst in infrared: new limits on the orbital period of 4U 1728-34. Mon. Not. R. Astron. Soc. 512, L37–L41 (2020).

    Article  ADS  Google Scholar 

  48. Knight, A., Ingram, A. & Middleton, M. X-ray eclipse mapping constrains the binary inclination and mass ratio of Swift J1858.6–0814. Mon. Not. R. Astron. Soc. 495, 1908–1920 (2022).

    Article  ADS  Google Scholar 

  49. Blumenthal, G. R. & Gould, R. J. Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev. Mod. Phys. 42, 237–271 (1970).

    Article  ADS  CAS  Google Scholar 

  50. Van der Laan, H. A model for variable extragalactic radio sources. Nature 211, 1131–1133 (1966).

    Article  ADS  Google Scholar 

  51. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC Hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  52. Reid, M. J. et al. A parallax distance to the microquasar GRS 1915+105 and a revised estimate of its black hole mass. Astrophys. J. 796, 2 (2014).

    Article  ADS  Google Scholar 

  53. Blandford, R. & Eichler, D. Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987).

    Article  ADS  CAS  Google Scholar 

  54. Bell, A. R. The acceleration of cosmic rays in shock fronts – I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978).

    Article  ADS  CAS  Google Scholar 

  55. Markoff, S., Falcke, H. & Fender, R. A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the Low/Hard spectral state. Astron. Astrophys. 372, L25–L28 (2001).

    Article  ADS  CAS  Google Scholar 

  56. Harmon, B. A. et al. Hard X-ray signature of plasma ejection in the galactic jet source GRS 1915+105. Astrophys. J. 477, L85–L89 (1997).

    Article  ADS  Google Scholar 

  57. Belloni, T., Méndez, M., King, A. R., van der Klis, M. & van Paradijs, J. A unified model for the spectral variability in GRS 1915+105. Astrophys. J. 488, L109–L112 (1997).

    Article  ADS  Google Scholar 

  58. Harding, L. K. et al. CHIMERA: a wide-field, multi-colour, high-speed photometer at the prime focus of the Hale telescope. Mon. Not. R. Astron. Soc. 457, 3036–3049 (2016).

    Article  ADS  Google Scholar 

  59. Nikzad, S. et al. High-efficiency UV/optical/NIR detectors for large aperture telescopes and UV explorer missions: development of and field observations with delta-doped arrays. J. Astron. Telesc. Instrum. Syst. 3, 036002 (2017).

    Article  ADS  Google Scholar 

  60. Tody, D. in Instrumentation in Astronomy VI, Vol. 0627 (ed. Crawford, D. L.) 733 (SPIE, 1986).

  61. Mönkkönen, J. et al. Evidence for the radiation-pressure dominated accretion disk in bursting pulsar GRO J1744–28 using timing analysis. Astron. Astrophys. 626, A106 (2019).

    Article  Google Scholar 

  62. Homan, J. et al. Evidence for simultaneous jets and disk winds in luminous low-mass X-ray binaries. Astrophys. J. 830, L5 (2016).

    Article  ADS  Google Scholar 

  63. Motta, S. E. & Fender, R. P. A connection between accretion states and the formation of ultrarelativistic outflows in a neutron star X-ray binary. Mon. Not. R. Astron. Soc. 483, 3686–3699 (2019).

    Article  ADS  CAS  Google Scholar 

  64. Miller, J. M., Maitra, D., Cackett, E. M., Bhattacharyya, S. & Strohmayer, T. E. A fast X-ray disk wind in the transient pulsar IGR J17480–2446 in Terzan 5. Astrophys. J. 731, L7 (2011).

    Article  ADS  Google Scholar 

  65. Poutanen, J., Lipunova, G., Fabrika, S., Butkevich, A. G. & Abolmasov, P. Supercritically accreting stellar mass black holes as ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 377, 1187–1194 (2007).

    Article  ADS  Google Scholar 

  66. Middleton, M. J., Higginbottom, N., Knigge, C., Khan, N. & Wiktorowicz, G. Thermally driven winds in ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 509, 1119–1126 (2022).

    Article  ADS  CAS  Google Scholar 

  67. Walton, D. J. et al. A potential cyclotron resonant scattering feature in the ultraluminous X-ray source pulsar NGC 300 ULX1 seen by NuSTAR and XMM-Newton. Astrophys. J. 857, L3 (2018).

    Article  ADS  Google Scholar 

  68. Vasilopoulos, G. et al. NGC 300 ULX1: spin evolution, super-Eddington accretion, and outflows. Mon. Not. R. Astron. Soc. 488, 5225–5231 (2019).

    Article  ADS  CAS  Google Scholar 

  69. Vasilopoulos, G. et al. The 2019 super-Eddington outburst of RX J0209.6–7427: detection of pulsations and constraints on the magnetic field strength. Mon. Not. R. Astron. Soc. 494, 5350–5359 (2020).

    Article  ADS  CAS  Google Scholar 

  70. Kosec, P. et al. Ionized emission and absorption in a large sample of ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 508, 3569–3588 (2021).

    Article  ADS  CAS  Google Scholar 

  71. Bachetti, M. et al. Orbital decay in M82 X-2. Astrophys. J. 937, 125 (2022).

    Article  ADS  Google Scholar 

  72. Tsygankov, S. S., Doroshenko, V., Lutovinov, A. A., Mushtukov, A. A. & Poutanen, J. SMC X-3: the closest ultraluminous X-ray source powered by a neutron star with non-dipole magnetic field. Astron. Astrophys. 605, A39 (2017).

    Article  ADS  Google Scholar 

  73. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  74. Illarionov, A. F. & Sunyaev, R. A. Why the number of galactic X-ray stars is so small? Astron. Astrophys. 39, 185–195 (1975).

    ADS  Google Scholar 

  75. Campana, S. et al. The quiescent X-ray emission of three transient X-ray pulsars. Astrophys. J. 580, 389–393 (2002).

    Article  ADS  Google Scholar 

  76. Homan, J. et al. Rossi X-ray Timing Explorer observations of the first transient Z source XTE J1701–462: shedding new light on mass accretion in luminous neutron star X-ray binaries. Astrophys. J. 656, 420–430 (2007).

    Article  ADS  CAS  Google Scholar 

  77. Muñoz-Darias, T., Fender, R. P., Motta, S. E. & Belloni, T. M. Black hole-like hysteresis and accretion states in neutron star low-mass X-ray binaries. Mon. Not. R. Astron. Soc. 443, 3270–3283 (2014).

    Article  ADS  Google Scholar 

  78. Gladstone, J., Done, C. & Gierliński, M. Analysing the atolls: X-ray spectral transitions of accreting neutron stars. Mon. Not. R. Astron. Soc. 378, 13–22 (2007).

    Article  ADS  CAS  Google Scholar 

  79. Coburn, W. et al. Magnetic fields of accreting X-ray pulsars with the Rossi X-ray Timing Explorer. Astrophys. J. 580, 394–412 (2002).

    Article  ADS  Google Scholar 

  80. Reig, P. Be/X-ray binaries. Astrophys Space Sci. 332, 1–29 (2011).

    Article  ADS  CAS  Google Scholar 

  81. Kaaret, P., Feng, H. & Roberts, T. P. Ultraluminous X-ray sources. Annu. Rev. Astron. Astrophys. 55, 303–341 (2017).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

F.M.V. thanks R. Arcodia, P. Casella, G. Marcel, G. Mastroserio, N. Scepi and L. Stella for insightful discussions. The interpretation of the results benefited from discussions held during the meeting ‘Looking at the disc-jet coupling from different angles’ at the International Space Science Institute in Bern, Switzerland. F.M.V. was supported by the NASA awards 80NSSC19K1456, 80NSSC21K0526 and from grant FJC2020-043334-I financed by MCIN/AEI/10.13039/501100011033 and NextGenerationEU/PRTR. J.N. acknowledges support by the SAO award GO1-22036X. A.J.T. is a NASA Einstein Fellow and acknowledges support for this work provided by NASA through the NASA Hubble Fellowship grant no. HST-HF2-51494.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. for NASA, under contract NAS5-26555. D.A. and N.C.S. acknowledge support from the Science and Technology Facilities Council (STFC) grant ST/V001000/1. F.M.V., M.A.P. and V.A.C. acknowledge support from the Spanish Ministry of Science and Innovation research project PID2020-120323GB-I00. M.A.P. acknowledges support from the Consejería de Economía, Conocimiento y Empleo del Gobierno de Canarias and the European Regional Development Fund (ERDF) under grant with reference ProID2021010132 ACCISI/FEDER, UE. T.B. acknowledges financial contribution from the agreement ASI-INAF n.2017-14-H.0 and from PRIN-INAF 2019 N.15. T.M.D. acknowledges support from the Spanish Ministry of Science and Innovation project PID2021-124879NB-I00 and the Europa Excelencia grant (EUR2021-122010). T.R. acknowledges the financial contribution from the agreement ASI-INAF n.2017-14-H.0.

Author information

Authors and Affiliations

Authors

Contributions

F.M.V. and J.N. drew the new physical scenario for multiwavelength instabilities. F.M.V. carried out the multi-λ timing analysis of the Swift J1858 dataset. A.J.T. modelled the radio variability with the help of S.d.P. and J.v.d.E. Y.C. modelled the phase dependence of the X-ray/IR lag with the help of N.C.S. For Swift J1858, N.C.S. provided the UV and X-ray data; F.J.-I. provided the optical data from LT; G.V., C.D.B., J.M. and M.O.A. provided optical data from Chimera and WASP; J.v.d.E. and T.R. provided the radio data. J.N. is the principal investigator of the Chandra and VLA proposal on GRS 1915; A.J.T. reduced and analysed the radio data. F.M.V., Y.C., G.V., D.A., T.B., N.D., T.M.D. and J.v.d.E. contributed substantially to the development of the luminosity–magnetic field diagram (Extended Data Fig. 1) to compare the different neutron stars. All authors contributed actively to the discussion and to the final version of the manuscript.

Corresponding author

Correspondence to F. M. Vincentelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Emrah Kalemci and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Luminosity versus magnetic field diagram for accreting neutron stars.

The long dashed line represents the limit in the parameter space for which the inner disk is (blue) or is not (red) radiation pressure dominated, that is, where the transition between zones A and B (RAB) of a Shakura and Sunyaev73 disk is greater than the magnetospheric radius (Rm) or the star radius (R*), whichever is larger. Because the disk rotates with Keplerian velocity, for large Rm, the inner disk rotates slower than the neutron star magnetosphere and accretion can be halted owing to the propeller effect74. The dashed grey lines correspond to the propeller threshold luminosities as a function of the magnetic field for different spins74,75. For all these lines, we set ξ = 1, α = 0.1, MNS = 1.4 M and R = 10 km. We then marked the sources that showed ‘1915-like’ variability patterns (green ticks) in their light curves: the Rapid Burster6, the Bursting Pulsar61,64, the ULX NGC 3621 (ref. 31) and our target, Swift J1858. Along with these, we also showed the different phenomenological classes of accreting neutron stars X-ray binaries, depending on their magnetic field and luminosities. At low magnetic field (≤109 G), we find classical LMXBs, which, depending on their accretion rate, can manifest as atolls, bright atolls or Z sources76,77. X-ray timing studies have also shown that accreting millisecond pulsars (AMXPs), with a magnetic field in the 108 G to 109 G range, are also compatible with atolls in their hard state78. For higher magnetic fields of 109 G, the observed accreting neutron stars usually show pulsations, but—owing to the lower propeller threshold—also have slower spin periods with respect to AMXPs. Above 1011 G, the diagram is mainly populated by high-mass X-ray binaries79,80 and pulsating ULXs81. For all these classes/objects, we also marked which of them show typical phenomenology linked to accretion instabilities, that is, radio ejecta (yellow star) and outflows (cyan waves). We note that these phenomena tend to be present above the radiation pressure disk threshold (see Methods).

Extended Data Fig. 2 Infrared lag analysis.

a, Lag distribution from the five simultaneous NuSTAR–HAWK-I windows after 104 flux randomizations. An evolution of the lag centroid is visible. b, CCF computed between HST and HAWK-I. Excluding the asymmetry at longer lags, owing to the asymmetry of the flares, the CCF peaks at 0.

Extended Data Fig. 3 Averaged flare profile for events.

Owing to the presence of two nearby flares, these are also present not at the centre. However, the overall connection between long and short timescales is still clear.

Extended Data Fig. 4 X-ray versus infrared lag modelling.

a, Fit to the lags obtained including the flares in the light curves. The only parameter allowed to change is the inclination of the binary, i. Long and short dashed curves represent 68% and 99% confidence levels, respectively. b, Histograms of the posterior distributions of the inclinations. In all plots, dotted lines indicate the 0.5th and 99.5th percentiles, dashed lines indicate the 16th and 84th percentiles and solid lines indicate the median. c, Fit to the lags measured excluding the flares from the light curves. d, Histogram of the posterior distribution excluding the flares.

Extended Data Fig. 5 Unconstrained radio modelling of Swift J1858.

Same as Fig. 3a–c but modelling the Swift J1858 radio light curve using no constraints on the ejection times. We found similar results with larger errors.

Extended Data Fig. 6 Comparison of the beats at different wavelengths.

a, Mean-normalized light curves used for quantifying the association between Swift J1858 and GRS 1915: Chandra data from GRS 1915+105 (blue, +1 shift applied), HAWK-I data from Swift J1858 (red), WASP data from Swift J1858 (green, −1 shift applied) and CHIMERA data from Swift J1858 (purple, −2 shift applied). b, Cumulative distribution function (CDF) of the flux distributions of the light curves.

Extended Data Fig. 7 Flux–flux correlation diagram.

a, Flux–flux diagram with respect to the HST measurements for NuSTAR (open circles), LT (open squares) and HAWK-I (filled circles). Although the O/IR is well correlated, the X-rays show a non-linear trend. All bands have been normalized to their average. b, The plot shows the ratio of HAWK-I over LT (filled circles) and HST over LT (opened circles) as a function of the X-ray count rate normalized to 6.5 counts s−1.

Extended Data Table 1 Swift J1858 jet modelling results without constraining the ejection time
Extended Data Table 2 Swift J1858 jet modelling results constraining the ejection time
Extended Data Table 3 GRS 1915+105 jet modelling results

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincentelli, F.M., Neilsen, J., Tetarenko, A.J. et al. A shared accretion instability for black holes and neutron stars. Nature 615, 45–49 (2023). https://doi.org/10.1038/s41586-022-05648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05648-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing