Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction

Abstract

The carbon dioxide and carbon monoxide electroreduction reactions, when powered using low-carbon electricity, offer pathways to the decarbonization of chemical manufacture1,2. Copper (Cu) is relied on today for carbon–carbon coupling, in which it produces mixtures of more than ten C2+ chemicals3,4,5,6: a long-standing challenge lies in achieving selectivity to a single principal C2+ product7,8,9. Acetate is one such C2 compound on the path to the large but fossil-derived acetic acid market. Here we pursued dispersing a low concentration of Cu atoms in a host metal to favour the stabilization of ketenes10—chemical intermediates that are bound in monodentate fashion to the electrocatalyst. We synthesize Cu-in-Ag dilute (about 1 atomic per cent of Cu) alloy materials that we find to be highly selective for acetate electrosynthesis from CO at high *CO coverage, implemented at 10 atm pressure. Operando X-ray absorption spectroscopy indicates in situ-generated Cu clusters consisting of <4 atoms as active sites. We report a 12:1 ratio, an order of magnitude increase compared to the best previous reports, in the selectivity for acetate relative to all other products observed from the carbon monoxide electroreduction reaction. Combining catalyst design and reactor engineering, we achieve a CO-to-acetate Faradaic efficiency of 91% and report a Faradaic efficiency of 85% with an 820-h operating time. High selectivity benefits energy efficiency and downstream separation across all carbon-based electrochemical transformations, highlighting the importance of maximizing the Faradaic efficiency towards a single C2+ product11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CO-to-acetate electrocatalyst design.
Fig. 2: Structural characterization of Cu/Ag-DA nanoparticles.
Fig. 3: XAS analysis.
Fig. 4: CO electroreduction of Cu/Ag-DA materials at pressure.

Similar content being viewed by others

Data availability

The datasets supporting the findings of this article are included in the article and its Supplementary Information.

References

  1. Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lum, Y. & Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019).

    Article  CAS  Google Scholar 

  5. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  6. Wang, X. et al. Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nat. Commun. 10, 5186 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Jhong, H. R. M., Ma, S. & Kenis, P. J. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2, 191–199 (2013).

    Article  Google Scholar 

  8. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Jouny, M. et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Kibria, M. G. et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, 1807166 (2019).

    Article  Google Scholar 

  12. Fernández, L. Production Capacity of Acetic Acid Worldwide in 2018 and 2023 (Statista, 2021); https://www.statista.com/statistics/1063215/acetic-acid-production-capacity-globally/#statisticContainer.

  13. Le Berre, C., Serp, P., Kalck, P. & Torrence, G. P. in Ullmann’s Encyclopedia of Industrial Chemistry (Ed. Ley, C.) 1−34 (Wiley-VCH, 2014).

  14. Kiefer, D., Merkel, M., Lilge, L., Henkel, M. & Hausmann, R. From acetate to bio-based products: underexploited potential for industrial biotechnology. Trends Biotechnol. 39, 397–411 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Bozzano, G. & Manenti, F. Efficient methanol synthesis: perspectives, technologies and optimization strategies. Prog. Energy Combust. Sci. 56, 71–105 (2016).

    Article  Google Scholar 

  16. Dimian, A. C. & Kiss, A. A. Novel energy efficient process for acetic acid production by methanol carbonylation. Chem. Eng. Res. Des. 159, 1–12 (2020).

    Article  CAS  Google Scholar 

  17. Kätelhön, A. et al. Methodology cm.chemicals. Version A (Carbon Minds, accessed 1 June 2021); www.carbon-minds.com/cm_chemicals_methodology_V1.00_2021.pdf.

  18. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  ADS  CAS  Google Scholar 

  19. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    Article  CAS  Google Scholar 

  20. Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Zang, D. et al. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B 281, 119426 (2021).

    Article  CAS  Google Scholar 

  22. Li, Y. et al. A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance. J. Mater. Chem. A 5, 20833–20842 (2017).

    Article  CAS  Google Scholar 

  23. Hauch, A. et al. Recent advances in solid oxide cell technology for electrolysis. Science 370, eaba6118 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021).

    Article  CAS  Google Scholar 

  25. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  26. Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85, 2309–2326 (1989).

    Article  CAS  Google Scholar 

  27. Zhan, C. et al. Revealing the CO coverage-driven C-C coupling mechanism for electrochemical CO2 reduction on Cu2O nanocubes via operando Raman spectroscopy. ACS Catal. 11, 7694–7701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deshpande, S., Maxson, T. & Greeley, J. Graph theory approach to determine configurations of multidentate and high coverage adsorbates for heterogeneous catalysis. npj Comput. Mater. 6, 79 (2020).

    Article  ADS  CAS  Google Scholar 

  29. Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Guo, H., Chen, Y., Ping, H., Wang, L. & Peng, D. L. One-pot synthesis of hexagonal and triangular nickel-copper alloy nanoplates and their magnetic and catalytic properties. J. Mater. Chem. 22, 8336–8344 (2012).

    Article  CAS  Google Scholar 

  31. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020).

    Article  ADS  CAS  Google Scholar 

  33. Karapinar, D. et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58, 15098–15103 (2019).

    Article  CAS  Google Scholar 

  34. Ma, M. et al. Local reaction environment for selective electroreduction of carbon monoxide. Energy Environ. Sci. 15, 2470–2478 (2022).

    Article  CAS  Google Scholar 

  35. Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    Article  ADS  CAS  Google Scholar 

  36. Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).

    Article  CAS  Google Scholar 

  37. Hjorth Larsen, A. et al. The atomic simulation environment - a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  PubMed  Google Scholar 

  38. Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1169–11186 (1996).

    Article  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  CAS  Google Scholar 

  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  45. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  46. Wang, X. et al. Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nat. Commun. 12, 3387 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, X. et al. Efficient methane electrosynthesis enabled by tuning local CO2 availability. J. Am. Chem. Soc. 142, 3525–3531 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).

    Article  ADS  Google Scholar 

  49. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  50. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  51. Blaha, P., Schwarz, K., Sorantin, P. & Trickey, S. B. Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990).

    Article  ADS  CAS  Google Scholar 

  52. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  ADS  CAS  Google Scholar 

  53. Rehr, J. J. & Albers, R. C. Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).

    Article  ADS  CAS  Google Scholar 

  54. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Freire, R. M. et al. Natural arrangement of AgCu bimetallic nanostructures through oleylamine reduction. Inorg. Chem. Front. 7, 4902–4912 (2020).

    Article  CAS  Google Scholar 

  56. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, B. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10, 2980 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Ogihara, H., Maezuru, T., Ogishima, Y. & Yamanaka, I. Electrocatalytic activity of Co-4,4′dimethyl-2,2′-bipyridine supported on Ketjenblack for reduction of CO2 to CO using PEM reactor. Electrocatalysis 9, 220–225 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.P. acknowledges financial support from the National Key R&D Program of China (grant number 2022YFC2106000), the National Natural Science Foundation of China (grant number 11874164) and the Innovation Fund of Wuhan National Laboratory for Optoelectronics. J.J. acknowledges financial support from the National Natural Science Foundation of China (grant number 52006085) and the China Postdoctoral Science Foundation (grant numbers 2019TQ0104 and 2020M672343). L.M. acknowledges financial support from the National Natural Science Foundation of China (grant numbers 52127816 and 51832004) and the National Key Research and Development Program of China (grant number 2020YFA0715000). J.L. acknowledges financial support from the National Natural Science Foundation of China (grant number BE3250011), the National Key Research and Development Program of China (grant number 2022YFA1505100) and Shanghai Jiao Tong University (grant number WH220432516). E.H.S. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery programme (grant number RGPIN-2017-06477) and the Ontario Research Fund (grant number ORF-RE08-034). J.W. acknowledges support from the NSERC Postgraduate Scholarship – Doctoral (PGS-D). Z.W. acknowledges financial support from the Marsden Fund Council for Government funding (grant number 21-UOA-237) and the Catalyst: Seeding General Grant (grant number 22-UOA-031-CGS), managed by the Royal Society Te Apārangi. C.W. acknowledges financial support from the National Natural Science Foundation of China (grant numbers 51972129 and 52272202). Figure 1a was created with BioRender.com. The DFT computations in Fig. 1 exploring reaction pathways were carried out on the Niagara supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation, the Government of Ontario, the Ontario Research Fund Research Excellence Program and the University of Toronto. This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (grant number NSF ECCS-2025633), the IIN and Northwestern’s MRSEC programme (grant number NSF DMR-1720139). Part of the research described in this paper was carried out at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation, NSERC, the National Research Council, the Canadian Institutes of Health Research, the Government of Saskatchewan and the University of Saskatchewan. We thank beamline BL14W1 (X-ray absorption fine structure) at SSRF for providing the beamtime, and also acknowledge the support of the Analytical and Testing Center of Huazhong University of Science and Technology for X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma optical emission spectroscopy, SEM and TEM measurements.

Author information

Authors and Affiliations

Authors

Contributions

Y.P., E.H.S., D.S., Z.W. and L.M. supervised the project. J.J. designed the high-pressure electrocatalytic system and carried out electrochemical experiments. Q.M. completed catalyst synthesis and most of its characterization (TEM, X-ray photoelectron spectroscopy, X-ray diffraction and inductively coupled plasma). J.W. carried out DFT calculations. J.L., P.P., J.W., Y.H., M.S., Q.X., J.M., Y.W., Y.X., Y.P. and Z.J. carried out XAS measurements, and J.L. analysed the XAS data. L.M., R.L., P.Q., Y.P., Z.C., W.Z. and K.Y. carried out Raman characterization, and J.W. analysed the Raman data. R.L. and Y.M. conducted vibrational frequency calculations. J.J., G.S. and Q.M. carried out membrane electrode assembly stability tests. Y.X. and A.O. contributed preliminary stability measurements. J.S. and X.J. carried out NMR measurements. Q.M., Y.L., D.W. and P.Q. carried out SEM measurements. X.H. and V.P.D. carried out the HAADF scanning TEM measurements. Y.-M.Y. and T.-K.S. completed the XANES fitting. J.W. conducted the techno-economic assessment. P.O., X.W., Z.W., C.W., B.Y.X. and D.S. contributed to data analysis. J.J., J.W., Q.M., J.L., Y.P. and E.H.S. co-wrote the manuscript. All authors discussed the results and assisted during manuscript preparation.

Corresponding authors

Correspondence to Liqiang Mai, Edward H. Sargent or Yuanjie Pang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Feng Jiao, Yongge Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains details regarding the techno-economic analysis, Supplementary Figs. 1–43, Tables 1–31, a Note (Adsorption of C2 intermediates on low Cu concentration surfaces) and References (see contents page for details).

Supplementary Data

DFT source data (corresponding to Supplementary Table 31).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Wicks, J., Min, Q. et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 617, 724–729 (2023). https://doi.org/10.1038/s41586-023-05918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05918-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing