Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlative metabologenomics of 110 fungi reveals metabolite–gene cluster pairs

Abstract

Natural products research increasingly applies -omics technologies to guide molecular discovery. While the combined analysis of genomic and metabolomic datasets has proved valuable for identifying natural products and their biosynthetic gene clusters (BGCs) in bacteria, this integrated approach lacks application to fungi. Because fungi are hyper-diverse and underexplored for new chemistry and bioactivities, we created a linked genomics–metabolomics dataset for 110 Ascomycetes, and optimized both gene cluster family (GCF) networking parameters and correlation-based scoring for pairing fungal natural products with their BGCs. Using a network of 3,007 GCFs (organized from 7,020 BGCs), we examined 25 known natural products originating from 16 known BGCs and observed statistically significant associations between 21 of these compounds and their validated BGCs. Furthermore, the scalable platform identified the BGC for the pestalamides, demystifying its biogenesis, and revealed more than 200 high-scoring natural product–GCF linkages to direct future discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow for the metabologenomics approach for natural products discovery in fungi.
Fig. 2: Comparison of GCF-natural product score distributions using different GCF grouping parameters.
Fig. 3: Compiled metabolite–GCF correlations using optimized GCF network.
Fig. 4: Heterologous expression of pestalamide B in Aspergillus nidulans.
Fig. 5: Proposed biosynthesis of pestalamide B.

Similar content being viewed by others

Data availability

All genomes that were sequenced for this work are available via NCBI under BioProject PRJNA852164. The metabolomics data (as .mzXML files) for the 110-strain dataset are available via the MassIVE repository under accession no. MSV000089848. Additionally, we have included Supplementary Data 1, which includes.html files for all MIBiG-anchored GCFs with detected metabolites, as well as the pestalamide GCF discovered in this work. The processed MZmine peak list that we used for correlations (generated using the publicly available .mzXML files) is provided as Supplementary Data 2.

References

  1. Bernardini, S., Tiezzi, A., Laghezza Masci, V. & Ovidi, E. Natural products for human health: an historical overview of the drug discovery approaches. Nat. Prod. Res. 32, 1926–1950 (2018).

    CAS  PubMed  Google Scholar 

  2. Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).

    Google Scholar 

  3. Ráduly, Z., Szabó, L., Madar, A., Pócsi, I. & Csernoch, L. Toxicological and medical aspects of Aspergillus-derived mycotoxins entering the feed and food chain. Front. Microbiol. 10, 2908 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Bills, G. F., Gloer, J. B., Heitman, J., Howlett, B. J. & Stukenbrock, E. H. Biologically active secondary metabolites from the fungi. Microbiol. Spectr. 4, 4.6.01 (2016).

  5. Li, Y. F. et al. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet. Biol. 89, 18–28 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Keller, N. P. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Caesar, L. K., Montaser, R., Keller, N. P. & Kelleher, N. L. Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat. Prod. Rep. 38, 2041–2065 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kautsar, S. A., van der Hooft, J. J. J., de Ridder, D. & Medema, M. H. BiG-SLiCE: a highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. GigaScience 10, giaa154 (2021).

    PubMed  PubMed Central  Google Scholar 

  9. Robey, M. T., Caesar, L. K., Drott, M. T., Keller, N. P. & Kelleher, N. L. An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes. Proc. Natl Acad. Sci. USA 118, e2020230118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chavali, A. K. & Rhee, S. Y. Bioinformatics tools for the identification of gene clusters that biosynthesize specialized metabolites. Brief. Bioinform. 19, 1022–1034 (2017).

    PubMed Central  Google Scholar 

  11. Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).

    PubMed  Google Scholar 

  12. Nielsen, J. C. et al. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat. Microbiol. 2, 17044 (2017).

    CAS  PubMed  Google Scholar 

  13. Kautsar, S. A., Blin, K., Shaw, S., Weber, T. & Medema, M. H. BiG-FAM: the biosynthetic gene cluster families database. Nucleic Acids Res. 49, D490–D497 (2021).

    CAS  PubMed  Google Scholar 

  14. Drott, M. T. et al. Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi. Proc. Natl Acad. Sci. USA 118, e2021683118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Doroghazi, J. R. et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10, 963–968 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Goering, A. W. et al. Metabologenomics: correlation of microbial gene clusters with metabolites drives discovery of a nonribosomal peptide with an unusual amino acid monomer. ACS Cent. Sci. 2, 99–108 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schorn, M. A. et al. A community resource for paired genomic and metabolomic data mining. Nat. Chem. Biol. 17, 363–368 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Duncan, K. R. et al. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem. Biol. 22, 460–471 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Maansson, M. et al. An integrated metabolomic and genomic mining workflow to uncover the biosynthetic potential of bacteria. mSystems 1, e00028–15 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Tryon, J. H. et al. Genome mining and metabolomics uncover a rare d-capreomycidine containing natural product and its biosynthetic gene cluster. ACS Chem. Biol. 15, 3013–3020 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Männle, D. et al. Comparative genomics and metabolomics in the genus Nocardia. mSystems. 5, e00125–20 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. Handayani, I. et al. mining indonesian microbial biodiversity for novel natural compounds by a combined genome mining and molecular networking approach. Mar. Drugs 19, 316 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao, L., Shcherbin, E. & Mohimani, H. A metabolome- and metagenome-wide association network reveals microbial natural products and microbial biotransformation products from the human microbiota. mSystems 4, e00387–19 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Cao, L. et al. MetaMiner: a scalable peptidogenomics approach for discovery of ribosomal peptide natural products with blind modifications from microbial communities. Cell Syst. 9, 600–608 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hjörleifsson Eldjárn, G. et al. Ranking microbial metabolomic and genomic links in the NPLinker framework using complementary scoring functions. PLoS Comput. Biol. 17, e1008920 (2021).

    PubMed  PubMed Central  Google Scholar 

  26. Johnston, C. W. et al. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products. Nat. Comm. 6, 8421 (2015).

    CAS  Google Scholar 

  27. Kersten, R. D. & Weng, J.-K. Gene-guided discovery and engineering of branched cyclic peptides in plants. Proc. Natl Acad. Sci. USA 115, E10961–E10969 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Merwin, N. J. et al. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Proc. Natl Acad. Sci. USA 117, 371–380 (2020).

    CAS  PubMed  Google Scholar 

  29. Mohimani, H. et al. NRPquest: coupling mass spectrometry and genome mining for nonribosomal peptide discovery. J. Nat. Prod. 77, 1902–1909 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Medema, M. H. et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 11, 625–631 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Al Subeh, Z. Y. et al. Media and strain studies for the scaled production of cis-enone resorcylic acid lactones as feedstocks for semisynthesis. J. Antibiotics. 74, 496–507 (2021).

    CAS  Google Scholar 

  33. Flores-Bocanegra, L. et al. Cytotoxic naphthoquinone analogues, including heterodimers, and their structure elucidation using LR-HSQMBC NMR experiments. J. Nat. Prod. 84, 771–778 (2021).

    CAS  PubMed  Google Scholar 

  34. Knowles, S. L. et al. Opportunities and limitations for assigning relative configurations of antibacterial bislactones using GIAO NMR shift calculations. J. Nat. Prod. 84, 1254–1260 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. El-Elimat, T. et al. High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. J. Nat. Prod. 76, 1709–1716 (2013).

    CAS  PubMed  Google Scholar 

  36. Paguigan, N. D. et al. Enhanced dereplication of fungal cultures via use of mass defect filtering. J. Antibiot. 70, 553–561 (2017).

    CAS  Google Scholar 

  37. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Van Santen, J. A. et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent. Sci. 5, 1824–1833 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Wang, F. et al. CFM-ID 4.0: more accurate ESI-MS/MS spectral prediction and compound identification. Anal. Chem. 93, 11692–11700 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding, G. et al. Pestalazines and pestalamides, bioactive metabolites from the plant pathogenic fungus Pestalotiopsis theae. J. Nat. Prod. 71, 1861–1865 (2008).

    CAS  PubMed  Google Scholar 

  41. Hashimoto, M., Kato, H., Katsuki, A., Tsukamoto, S. & Fujii, I. Identification of the biosynthetic gene cluster for Himeic acid A: a Ubiquitin‐Activating Enzyme (E1) inhibitor in Aspergillus japonicus MF275. Chem. Bio. Chem. 19, 535–539 (2018).

    CAS  PubMed  Google Scholar 

  42. Hiort, J. et al. New natural products from the sponge-derived fungus Aspergillus niger. J. Nat. Prod. 67, 1532–1543 (2004).

    CAS  PubMed  Google Scholar 

  43. Zhou, H. et al. Penipyridones a–f, pyridone alkaloids from Penicillium funiculosum. J. Nat. Prod. 79, 1783–1790 (2016).

    CAS  PubMed  Google Scholar 

  44. Zhou, X. et al. Aspernigrins with anti-HIV-1 activities from the marine-derived fungus Aspergillus niger SCSIO Jcsw6F30. Bioorg. Med. Chem. Lett. 26, 361–365 (2016).

    CAS  PubMed  Google Scholar 

  45. Wang, B. et al. Deletion of the epigenetic regulator GcnE in Aspergillus niger FGSC A1279 activates the production of multiple polyketide metabolites. Microbiol. Res. 217, 101–107 (2018).

    CAS  PubMed  Google Scholar 

  46. Chiang, Y.-M. et al. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal Genet. Biol. 48, 430–437 (2011).

    CAS  PubMed  Google Scholar 

  47. Montaser, R. & Kelleher, N. L. Discovery of the biosynthetic machinery for stravidins, biotin antimetabolites. ACS Chem. Biol. 15, 1134–1140 (2019).

    Google Scholar 

  48. Wang, F.-Q. et al. Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. Biochem. Biophys. Res. Comm. 360, 453–458 (2007).

    CAS  PubMed  Google Scholar 

  49. Albright, J. C. et al. Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation. ACS Chem., Biol. 10, 1535–1541 (2015).

    CAS  PubMed  Google Scholar 

  50. Knowles, S. L., Raja, H. A., Roberts, C. D. & Oberlies, N. H. Fungal–fungal co-culture: a primer for generating chemical diversity. Nat. Prod. Rep. 39, 1557–1573 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nickles, G., Ludwikoski, I., Bok, J. W. & Keller, N. P. Comprehensive guide to extracting and expressing fungal secondary metabolites with Aspergillus fumigatus as a case study. Curr. Protoc. 1, e321 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).

    CAS  PubMed  Google Scholar 

  55. Nordberg, H. et al. The genome portal of the department of energy joint genome institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014).

    CAS  PubMed  Google Scholar 

  56. Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf. 11, 395 (2010).

    Google Scholar 

  59. Du, X., Smirnov, A., Pluskal, T., Jia, W. & Sumner, S. in Computational Methods and Data Analysis for Metabolomics (ed. Li, S.) 25–48 (Springer, 2020).

  60. Bok, J. W. et al. Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genomics 16, 343 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Genome sequencing for this project was conducted at the Roy J. Carver Biotechnology Center at the University of Illinois-Urbana-Champaign. This research was supported in part by the National Institutes of Health grant nos. F32 GM132679 to L.K.C., R01 GM112739-05A1 to N.P.K., T32 GM135066 to G.N., R44 AI140943-03 to J.W.B., P01 CA125066 to N.H.O. and 2R01 AT009143 to N.L.K. This work also made use of the IMSERC NMR facility at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental Resource (grant no. NSF ECCS-2025633) grant. Figures 1, 4 and 5 were created using BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

L.K.C. led the project, organized data collection and analyzed data for both large scale correlations and targeted biosynthetic studies. F.A.B. was responsible for fungal culture and DNA extraction and helped prepare and run MS samples. M.T.R. assembled genomes and conducted bioinformatic analysis for both GCF networking and metabologenomics correlations. N.J.A. grew fungi, extracted metabolomes and ran MS samples. R.G. and D.D. prepared and ran MS samples and assisted with metabolomics analysis. J.W.B. completed fungal transformations for heterologous expression and knockout studies. G.N. compiled correlations plots and assisted with GCF optimization. R.J.S., D.J. and D.M. designed, cloned and validated plasmids for heterologous expression. K.B.C., C.E.E. and N.H.O. assisted with metabolite dereplication and NMR analysis. H.A.R. provided expertise for fungal growth and extraction and taxonomic identification of fungal strains. N.P.K. and N.L.K. supervised the project after its initiation by N.L.K. The manuscript was written by L.K.C. and N.L.K., with all authors providing substantial edits and commentary throughout.

Corresponding author

Correspondence to Neil L. Kelleher.

Ethics declarations

Competing interests

The authors declare financial conflicts of interest with MicroMGx (N.L.K.), Varigen Biosciences (D.M.) and Terra Bioforge (N.L.K., D.M., M.T.R. and N.P.K.). Further, N.L.K. is a consultant for Thermo Fisher Scientific focusing on the use of Fourier-transform Mass Spectrometry in multi-Omics research. Finally, N.H.O. and H.A.R. are on the Scientific Advisory Board of Clue Genetics, and N.H.O. is on the Scientific Advisory Board of Mycosynthetix. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Hosein Mohimani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–15, Figs. 1–34 and uncropped gel images associated with Supplementary Figs. 31 and 32.

Reporting Summary

Supplementary Data 1

Folder containing .html files for 29 GCFs discussed in this paper. Each .html file includes gene cluster arrow diagrams for all BGCs belonging to a specific GCF and individual arrows are linked to their genetic sequences.

Supplementary Data 2

Filtered MzMine peak list used for metabologenomics analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caesar, L.K., Butun, F.A., Robey, M.T. et al. Correlative metabologenomics of 110 fungi reveals metabolite–gene cluster pairs. Nat Chem Biol 19, 846–854 (2023). https://doi.org/10.1038/s41589-023-01276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01276-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research