Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Sampling the proteome by emerging single-molecule and mass spectrometry methods

Mammalian cells have about 30,000 times as many protein molecules as mRNA molecules, which has major implications in the development of proteomics technologies. We discuss strategies that have been helpful for counting billions of protein molecules by liquid chromatography–tandem mass spectrometry and suggest that these strategies can benefit single-molecule methods, especially in mitigating the challenges posed by the wide dynamic range of the proteome.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of RNA and protein statistics.
Fig. 2: A liquid chromatography-mass spectrometry experiment can count billions of peptide ions within 90 min.
Fig. 3: Fractionation before counting molecules improves the dynamic range in proteomics.

References

  1. Nau, H. & Biemann, K. Anal. Biochem. 73, 139–153 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Hass, G. M. et al. Biochemistry 14, 1334–1342 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. Hunt, D. F., Yates, J. R. III, Shabanowitz, J., Winston, S. & Hauer, C. R. Proc. Natl Acad. Sci. USA 83, 6233–6237 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson, R. S. & Biemann, K. Biochemistry 26, 1209–1214 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Yamashita, M. & Fenn, J. B. J. Phys. Chem. 88, 4451–4459 (1984).

    Article  CAS  Google Scholar 

  6. Eng, J. K., McCormack, A. L. & Yates, J. R. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Venable, J. D., Dong, M.-Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Nat. Methods 1, 39–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Ross, P. L. et al. Mol. Cell Proteomics 3, 1154–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Specht, H. et al. Genome Biol. 22, 50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petelski, A. A. et al. Nat. Protoc. 16, 5398–5425 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Washburn, M. P., Wolters, D. & Yates, J. R. III Nat. Biotechnol. 19, 242–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Derks, J. et al. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01389-w (2022).

  13. Messner, C. B. et al. Cell Syst. 11, 11–24.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alfaro, J. A. et al. Nat. Methods 18, 604–617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swaminathan, J., Boulgakov, A. A. & Marcotte, E. M. PLOS Comput. Biol. 11, e1004080 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Palmblad, M. J. Proteome Res. 20, 3395–3399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Swaminathan, J. et al. Nat. Biotechnol. https://doi.org/10.1038/nbt.4278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reed, B. D. et al. Science 378, 186–192 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Mallick, P. Methods of assaying proteins. US Patent 10948488B2 (2021).

  20. Egertson, J. D. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.10.11.463967 (2021).

  21. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Science 374, 1509–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Slavov, N. Cell 185, 232–234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Milo, R. Bioessays 35, 1050–1055 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bekker-Jensen, D. B. et al. Cell Syst. 4, 587–599.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson, N. L. & Anderson, N. G. Mol. Cell. Proteomics 1, 845–867 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Marinov, G. K. et al. Genome Res. 24, 496–510 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peterson, D. W. & Hayes, J. M. Signal-to-noise ratios in mass spectroscopic ion-current-measurement systems. In Contemporary Topics in Analytical and Clinical Chemistry Vol. 3 (eds. Hercules, D. M. et al.) 217–252 (Springer US, 1978).

  28. Scigelova, M., Hornshaw, M., Giannakopulos, A. & Makarov, A. Mol. Cell. Proteomics 10, M111.009431 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Makarov, A. & Denisov, E. J. Am. Soc. Mass Spectrom. 20, 1486–1495 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. MacCoss, M. J., Toth, M. J. & Matthews, D. E. Anal. Chem. 73, 2976–2984 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Schwartz, J. C., Zhou, X.-G. & Bier, M. E. Method and apparatus of increasing dynamic range and sensitivity of a mass spectrometer. US Patent 5572022A (1996).

  32. Zhao, S., Ye, Z. & Stanton, R. RNA 26, 903–909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Belov, M. E. et al. Anal. Chem. 73, 5052–5060 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. Nat. Methods 15, 440–448 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Egertson, J. D. et al. Nat. Methods 10, 744–746 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anderson, N. L. et al. Mol. Cell. Proteomics 3, 311–326 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Pieper, R. et al. Proteomics 3, 422–432 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Macdonald, I. K., Parsy-Kowalska, C. B. & Chapman, C. J. Trends Cancer Res. 3, 198–213 (2017).

    Article  CAS  Google Scholar 

  39. Hoofnagle, A. N. & Wener, M. H. J. Immunol. Methods 347, 3–11 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McVicar, J. P., Kunitake, S. T., Hamilton, R. L. & Kane, J. P. Proc. Natl Acad. Sci. USA 81, 1356–1360 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heinecke, J. W. J. Lipid Res. 50 (Suppl.), S167–S171 (2009).

  42. Siuti, N. & Kelleher, N. L. Nat. Methods 4, 817–821 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kafader, J. O. et al. Nat. Methods 17, 391–394 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wörner, T. P. et al. Nat. Methods 17, 395–398 (2020).

    Article  PubMed  Google Scholar 

  45. Gatlin, C. L., Eng, J. K., Cross, S. T., Detter, J. C. & Yates, J. R. III Anal. Chem. 72, 757–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. MacCoss, M. J. et al. Proc. Natl Acad. Sci. USA 99, 7900–7905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turner, E. H., Lee, C., Ng, S. B., Nickerson, D. A. & Shendure, J. Nat. Methods 6, 315–316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Huffman, R. G. et al. Preprint at bioRxiv https://doi.org/10.1101/2022.03.16.484655 (2022).

  50. Panchaud, A. et al. Anal. Chem. 81, 6481–6488 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Slavov, N. Nat. Biotechnol. 39, 809–810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Derks, J. & Slavov, N. J. Proteome Res. https://doi.org/10.1021/acs.jproteome.2c00721 (2023).

  53. Pino, L. K., Just, S. C., MacCoss, M. J. & Searle, B. C. Mol. Cell. Proteomics 19, 1088–1103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Slavov, N. J. Proteome Res. 20, 4915–4918 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schwartz, J. C. & Kovtoun, V. V. Automatic gain control (AGC) method for an ion trap and a temporally non-uniform ion beam. US Patent 7960690B2 (2011).

  56. Klammer, A. A., Yi, X., MacCoss, M. J. & Noble, W. S. Anal. Chem. 79, 6111–6118 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Searle, B. C. et al. Nat. Commun. 9, 5128 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen, A. T., Franks, A. & Slavov, N. PLOS Comput. Biol. 15, e1007082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zrehen, A., Ohayon, S., Huttner, D. & Meller, A. Sci. Rep. 10, 15313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Donnelly, D. P. et al. Nat. Methods 16, 587–594 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu, Y. et al. Nat. Commun. 9, 882 (2018).

  62. Specht, H. et al. Preprint at bioRxiv https://doi.org/10.1101/399774 (2018).

  63. Leduc, A., Huffman, R. G., Cantlon, J., Khan, S. & Slavov, N. Genome Biol. 23, 261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Budnik, B., Levy, E., Harmange, G. & Slavov, N. Genome Biol. 19, 161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Slavov, N. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01411-1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hong, J. M. et al. iScience 25, 103586 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hagemann-Jensen, M. et al. Nat. Biotechnol. 38, 708–714 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with Edward Marcotte and members of the Alfaro, MacCoss and Slavov labs. M.J.M. appreciates the constructive feedback provided by UW Genome Sciences faculty. This work was supported in part by US National Institutes of Health grants U19 AG065156, R24 GM141156 and F31 AG066318; an Allen Distinguished Investigator award through The Paul G. Allen Frontiers Group to N.S.; a Seed Networks Award from CZI CZF2019-002424 to N.S.; award R01GM144967 from the US National Institute of General Medical Sciences; award R01HG10087 from the US National Human Genome Research Institute to M.W.; and the project ‘International Centre for Cancer Vaccine Science’ carried out within the International Agendas Programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund. We thank the PL-Grid and CI-TASK Infrastructure, Poland, for providing their hardware and software resources. This work is supported by the Knowledge At the Tip of Your Fingers: Clinical Knowledge for Humanity (KATY) project funded from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 101017453.

Author information

Authors and Affiliations

Authors

Contributions

M.J.M., J.A. and N.S. conceived the project and wrote an initial draft. D.A.F., M.J.M. and N.S. made figures. C.C.W. collected the plasma extracellular vesicle data. All authors contributed significantly to the content, edited, and approved the final manuscript.

Corresponding authors

Correspondence to Michael J. MacCoss, Javier Antonio Alfaro or Nikolai Slavov.

Ethics declarations

Competing interests

The MacCoss laboratory at the University of Washington has a sponsored research agreement with Thermo Fisher Scientific, a manufacturer of mass spectrometry instrumentation. M.J.M. is a paid consultant for Thermo Fisher Scientific. The Slavov laboratory at Northeastern University has a research agreement with Bruker, a manufacturer of mass spectrometry instrumentation.

Peer review

Peer review information

Nature Methods thanks Tae-Young Yoon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacCoss, M.J., Alfaro, J.A., Faivre, D.A. et al. Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat Methods 20, 339–346 (2023). https://doi.org/10.1038/s41592-023-01802-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-01802-5

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research