Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Magneto is ineffective in controlling electrical properties of cerebellar Purkinje cells, Assessing the utility of Magneto to control neuronal excitability in the somatosensory cortex and Revaluation of magnetic properties of Magneto

The Original Article was published on 30 September 2019

The Original Article was published on 30 September 2019

The Original Article was published on 30 September 2019

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Control analyses for electrophysiological characterization of Magneto2.0.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Code availability

No code was used in this study.

References

  1. Wheeler, M. A. et al. Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 19, 756–761 (2016).

    Article  CAS  Google Scholar 

  2. Duret, G. et al. Magnetic entropy as a proposed gating mechanism for magnetogenetic ion channels. Biophys. J. 116, 454–468 (2019).

    Article  CAS  Google Scholar 

  3. Hutson, M. R. et al. Temperature-activated ion channels in neural crest cells confer maternal fever-associated birth defects. Sci. Signal. 10, eaal4055 (2017).

    Article  Google Scholar 

  4. Mosabbir, A. A. & Truong, K. Genetically encoded circuit for remote regulation of cell migration by magnetic fields. ACS Synth. Biol. 7, 718–726 (2018).

    Article  CAS  Google Scholar 

  5. Stanley, S. A. et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 531, 647–650 (2016).

    Article  CAS  Google Scholar 

  6. Garmashova, N., Gorchakov, R., Frolova, E. & Frolov, I. Sindbis virus nonstructural protein nsP2 is cytotoxic and inhibits cellular transcription. J. Virol. 80, 5686–5696 (2006).

    Article  CAS  Google Scholar 

  7. Washbourne, P. & McAllister, A. K. Techniques for gene transfer into neurons. Curr. Opin. Neurobiol. 12, 566–573 (2002).

    Article  CAS  Google Scholar 

  8. Stanley, S. A., Sauer, J., Kane, R. S., Dordick, J. S. & Friedman, J. M. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92–98 (2015).

    Article  CAS  Google Scholar 

  9. Stanley, S. A. & Friedman, J. M. Electromagnetic regulation of cell activity. Cold Spring Harb. Percpect. Med. https://doi.org/10.1101/cshperspect.a034322 (2019).

  10. Xu, F.-X. et al. Nat. Neurosci. Magneto is ineffective in controlling electrical properties of cerebellar Purkinje cells. https://doi.org/10.1038/s41593-019-0475-3 (2019).

  11. Stanley, S. A. et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336, 604–608 (2012).

    Article  CAS  Google Scholar 

  12. Llanás, R. & Sugimori, M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. 305, 197–213 (1980).

    Article  Google Scholar 

  13. Barbic, M. Possible magneto-mechanical and magneto-thermal mechanisms of ion channel activation in magnetogenetics. Elife 8, e45807 (2019).

    Article  Google Scholar 

  14. Kole, K. et al. Nat. Neurosci. Assessing the utility of Magneto to control neuronal excitability in the somatosensory cortex. https://doi.org/10.1038/s41593-019-0474-4 (2019).

  15. Duret, G. et al. Magnetic entropy as a gating mechanism for magnetogenetic ion channels. Biophys. J. 116, 454–468 (2017).

    Article  Google Scholar 

  16. Berke, J. D., Okatan, M., Skurski, J. & Eichenbaum, H. B. Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 43, 883–896 (2004).

    Article  CAS  Google Scholar 

  17. Wang, G. et al. Nat. Neurosci. Revaluation of magnetic properties of Magneto. https://doi.org/10.1038/s41593-019-0473-5 (2019).

  18. Iordanova, B., Robison, C. S. & Ahrens, E. T. Design and characterization of a chimeric ferritin with enhanced iron loading and transverse NMR relaxation rate. J. Biol. Inorg. Chem. 15, 957–965 (2010).

    Article  CAS  Google Scholar 

  19. Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl Acad. Sci. USA 101, 396–401 (2004).

    Article  CAS  Google Scholar 

  20. Rajasethupathy, P., Ferenczi, E. & Deisseroth, K. Targeting neural circuits. Cell 165, 524–534 (2016).

    Article  CAS  Google Scholar 

  21. Meister, M. Physical limits to magnetogenetics. eLife 5, e17210 (2016).

    Article  Google Scholar 

  22. Ottolini, M., Barker, B. S., Gaykema, R. P., Meisler, M. H. & Patel, M. K. Aberrant sodium channel currents and hyperexcitability of medial entorhinal cortex neurons in a mouse model of SCN8A encephalopathy. J. Neurosci. 37, 7643–7655 (2017).

    Article  CAS  Google Scholar 

Download references

Author contributions

M.K.P. supervised the electrophysiology experiments. All authors wrote and edited the manuscript. A.D.G. supervised the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali D. Güler.

Ethics declarations

Competing interests

M.A.W. and A.D.G. are named inventors for a filed patent (Serial No. 15/770,141) by the University of Virginia for the use of TRPV4-ferritin to control the nervous system.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wheeler, M.A., Deppmann, C.D., Patel, M.K. et al. Reply to: Magneto is ineffective in controlling electrical properties of cerebellar Purkinje cells, Assessing the utility of Magneto to control neuronal excitability in the somatosensory cortex and Revaluation of magnetic properties of Magneto. Nat Neurosci 23, 1051–1054 (2020). https://doi.org/10.1038/s41593-019-0472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0472-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing