Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Origin of active sites on silica–magnesia catalysts and control of reactive environment in the one-step ethanol-to-butadiene process

An Author Correction to this article was published on 11 September 2023

This article has been updated

Abstract

Wet-kneaded silica–magnesia is a benchmark catalyst for the one-step ethanol-to-butadiene Lebedev process. Magnesium silicates, formed during wet kneading, have been proposed as the active sites for butadiene formation, and their properties are mainly explained in terms of the ratio of acid and base sites. However, their mechanism of formation and reactivity have not yet been fully established. Here we show that magnesium silicates are formed by the dissolution of Si and Mg subunits from their precursors, initiated by the alkaline pH of the wet-kneading medium, followed by cross-deposition on the precursor surfaces. Using two individual model systems (Mg/SiO2 and Si/MgO), we demonstrate that the location of the magnesium silicates (that is, Mg on SiO2 or Si on MgO) governs not only their chemical nature, but also the configuration of adsorbed ethanol and resulting selectivity. By using an NMR approach together with probe molecules, we demonstrate that acid and basic sites in close atomic proximity (~5 Å) promote butadiene formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wet-kneading approach and time-resolved characterization of the silica–magnesia catalyst during wet kneading.
Fig. 2: Location and type of magnesium silicates on a wet-kneaded, dried catalyst.
Fig. 3: Characterization of wet-kneaded silica–magnesia catalysts before and after calcination.
Fig. 4: Catalytic performances of wet-kneaded silica–magnesia catalysts at different wet-kneading times.
Fig. 5: Identification of the key surface magnesium silicates responsible for the one-step Lebedev process.
Fig. 6: Characterization of acid–base site proximity and formation of reaction intermediates.

Similar content being viewed by others

Data availability

The data supporting the findings of this article are available in the paper and its Supplementary Information or from the corresponding author on reasonable request.

Change history

References

  1. Bruijnincx, P. C. A. & Weckhuysen, B. M. Shale gas revolution: an opportunity for the production of biobased chemicals? Angew. Chem. Int. Ed. 52, 11980–11987 (2013).

    Article  CAS  Google Scholar 

  2. Angelici, C., Weckhuysen, B. M. & Bruijnincx, P. C. A. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem 6, 1595–1614 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Makshina, E. V. et al. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem. Soc. Rev. 43, 7917–7953 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Pomalaza, G., Arango Ponton, P., Capron, M. & Dumeignil, F. Ethanol-to-butadiene: the reaction and its catalysts. Catal. Sci. Technol. 10, 4860–4911 (2020).

    Article  CAS  Google Scholar 

  5. Bin Samsudin, I., Zhang, H., Jaenicke, S. & Chuah, G. K. Recent advances in catalysts for the conversion of ethanol to butadiene. Chem. Asian J. 15, 4199–4214 (2020).

    Article  Google Scholar 

  6. Jones, M. D. Catalytic transformation of ethanol into 1,3-butadiene. Chem. Cent. J. 8, 53 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pomalaza, G., Capron, M., Ordomsky, V. & Dumeignil, F. Recent breakthroughs in the conversion of ethanol to butadiene. Catalysts 6, 203 (2016).

    Article  Google Scholar 

  8. Dussol, D., Cadran, N., Laloue, N., Renaudot, L. & Schweitzer, J.-M. M. New insights of butadiene production from ethanol: elucidation of concurrent reaction pathways and kinetic study. Chem. Eng. J. 391, 123586 (2020).

    Article  CAS  Google Scholar 

  9. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  10. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    Article  CAS  Google Scholar 

  11. Wang, Y. et al. Direct conversion of CO2 to ethanol boosted by intimacy-sensitive multifunctional catalysts. ACS Catal. 11, 11742–11753 (2021).

    Article  CAS  Google Scholar 

  12. Cabello González, G. M. et al. Ethanol conversion into 1,3-butadiene over a mixed Hf-Zn catalyst: effect of reaction conditions and water content in ethanol. Fuel Process. Technol. 193, 263–272 (2019).

    Article  Google Scholar 

  13. Angelici, C., Velthoen, M. E. Z., Weckhuysen, B. M. & Bruijnincx, P. C. A. Influence of acid–base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2–MgO materials. Catal. Sci. Technol. 5, 2869–2879 (2015).

    Article  CAS  Google Scholar 

  14. Natta, G. & Rigamonti, R. Studio roentgenografico e chimico dei catalizzatori usati per la produzione del butadiene dall’alcool. Chim. Ind. 29, 239–243 (1947).

    CAS  Google Scholar 

  15. Kvisle, S., Aguero, A. & Sneeden, R. P. A. Transformation of ethanol into 1,3-butadiene over magnesium oxide/silica catalysts. Appl. Catal. 43, 117–131 (1988).

    Article  CAS  Google Scholar 

  16. Janssens, W. et al. Ternary Ag/MgO-SiO2 catalysts for the conversion of ethanol into butadiene. ChemSusChem 8, 994–1008 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Chung, S.-H. et al. Role of magnesium silicates in wet-kneaded silica–magnesia catalysts for the Lebedev ethanol-to-butadiene process. ACS Catal. 6, 4034–4045 (2016).

    Article  CAS  Google Scholar 

  18. Angelici, C., Velthoen, M. E. Z. Z., Weckhuysen, B. M. & Bruijnincx, P. C. A. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO2–MgO catalysts. ChemSusChem 7, 2505–2515 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Li, S. et al. Morphological control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol to 1,3-butadiene. Appl. Catal. A 577, 1–9 (2019).

    Article  Google Scholar 

  20. Huang, X., Men, Y., Wang, J., An, W. & Wang, Y. Highly active and selective binary MgO–SiO2 catalysts for the production of 1,3-butadiene from ethanol. Catal. Sci. Technol. 7, 168–180 (2017).

    Article  CAS  Google Scholar 

  21. Chung, S. et al. The importance of thermal treatment on wet-kneaded silica–magnesia catalyst and Lebedev ethanol-to-butadiene process. Nanomaterials 11, 579 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yi, H. et al. A novel method for surface wettability modification of talc through thermal treatment. Appl. Clay Sci. 176, 21–28 (2019).

    Article  CAS  Google Scholar 

  23. Lewandowski, M. et al. Investigations into the conversion of ethanol to 1,3-butadiene using MgO:SiO2 supported catalysts. Catal. Commun. 49, 25–28 (2014).

    Article  CAS  Google Scholar 

  24. Taifan, W. E., Bučko, T. & Baltrusaitis, J. Catalytic conversion of ethanol to 1,3-butadiene on MgO: a comprehensive mechanism elucidation using DFT calculations. J. Catal. 346, 78–91 (2017).

    Article  CAS  Google Scholar 

  25. Taifan, W. E. & Baltrusaitis, J. In situ spectroscopic insights on the molecular structure of the MgO/SiO2 catalytic active sites during ethanol conversion to 1,3-butadiene. J. Phys. Chem. C. 122, 20894–20906 (2018).

    Article  CAS  Google Scholar 

  26. Zhang, T., Cheeseman, C. R. & Vandeperre, L. J. Development of low pH cement systems forming magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 41, 439–442 (2011).

    Article  CAS  Google Scholar 

  27. Tonelli, M. et al. Structural characterization of magnesium silicate hydrate: towards the design of eco-sustainable cements. Dalton Trans. 45, 3294–3304 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Nied, D., Enemark-Rasmussen, K., L’Hopital, E., Skibsted, J. & Lothenbach, B. Properties of magnesium silicate hydrates (M-S-H). Cem. Concr. Res. 79, 323–332 (2016).

    Article  CAS  Google Scholar 

  29. Cole, W. F. A crystalline hydrated magnesium silicate formed in the breakdown of a concrete sea-wall. Nature 171, 354–355 (1953).

    Article  CAS  Google Scholar 

  30. Roosz, C. et al. Crystal structure of magnesium silicate hydrates (M-S-H): the relation with 2:1 Mg–Si phyllosilicates. Cem. Concr. Res. 73, 228–237 (2015).

    Article  CAS  Google Scholar 

  31. Sindorf, D. & Maciel, G. Cross-polarization magic-angle-spinning silicon-29 nuclear magnetic resonance study of silica gel using trimethylsilane bonding as a probe of surface geometry and reactivity. J. Phys. Chem. 86, 5208–5219 (1982).

    Article  CAS  Google Scholar 

  32. Leonardelli, S., Facchini, L., Fretigny, C., Tougne, P. & Legrand, A. P. Silicon-29 NMR study of silica. J. Am. Chem. Soc. 114, 6412–6418 (1992).

    Article  CAS  Google Scholar 

  33. Kobayashi, T., Perras, F. A., Slowing, I. I., Sadow, A. D. & Pruski, M. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research. ACS Catal. 5, 7055–7062 (2015).

    Article  CAS  Google Scholar 

  34. Magi, M., Lippmaa, E., Samoson, A., Engelhardt, G. & Grimmer, A. R. Solid-state high-resolution silicon-29 chemical shifts in silicates. J. Phys. Chem. 88, 1518–1522 (1984).

    Article  CAS  Google Scholar 

  35. Moravetski, V., Hill, J.-R., Eichler, U., Cheetham, A. K. & Sauer, J. 29Si NMR chemical shifts of silicate species: ab initio study of environment and structure effects. J. Am. Chem. Soc. 118, 13015–13020 (1996).

    Article  CAS  Google Scholar 

  36. Pustovgar, E. et al. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates. Nat. Commun. 7, 10952 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szabó, B. et al. MgO−SiO2 catalysts for the ethanol to butadiene reaction: the effect of Lewis acid promoters. ChemCatChem 12, 5686–5696 (2020).

    Article  Google Scholar 

  38. Walling, S. A., Kinoshita, H., Bernal, S. A., Collier, N. C. & Provis, J. L. Structure and properties of binder gels formed in the system Mg(OH)2–SiO2–H2O for immobilisation of Magnox sludge. Dalton Trans. 44, 8126–8137 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Bernard, E. et al. Characterization of magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 116, 309–330 (2019).

    Article  CAS  Google Scholar 

  40. Salomão, R., Arruda, C. C. & Antunes, M. L. P. Synthesis, dehydroxylation and sintering of porous Mg(OH)2-MgO clusters: evolution of microstructure and physical properties. Interceram. Int. Ceram. Rev. 69, 52–62 (2020).

    Article  Google Scholar 

  41. van Aken, P. A. & Langenhorst, F. Nanocrystalline, porous periclase aggregates as product of brucite dehydration. Eur. J. Mineral. 13, 329–341 (2001).

    Article  Google Scholar 

  42. Gomez-Villalba, L. S., Sierra-Fernandez, A., Rabanal, M. E. & Fort, R. TEM-HRTEM study on the dehydration process of nanostructured Mg–Ca hydroxide into Mg–Ca oxide. Ceram. Int. 42, 9455–9466 (2016).

    Article  CAS  Google Scholar 

  43. Rollinson, H. & Adetunji, J. in Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth (ed White, W. M.) 738–743 (Springer, 2018); https://doi.org/10.1007/978-3-319-39312-4_340

  44. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976).

    Article  Google Scholar 

  45. Green, J. Calcination of precipitated Mg(OH)2 to active MgO in the production of refractory and chemical grade MgO. J. Mater. Sci. 18, 637–651 (1983).

    Article  CAS  Google Scholar 

  46. Litasov, K. D. & Ohtani, E. in Advances in High-Pressure Mineralogy Vol. 421 (ed Ohtani, E.) 115–156 (Geological Society of America, 2007).

  47. Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G. & Grimmer, A. R. Structural studies of silicates by solid-state high-resolution 29Si NMR. J. Am. Chem. Soc. 102, 4889–4893 (1980).

    Article  CAS  Google Scholar 

  48. MacKenzie, K. J. D., Bradley, S., Hanna, J. V. & Smith, M. E. Magnesium analogues of aluminosilicate inorganic polymers (geopolymers) from magnesium minerals. J. Mater. Sci. 48, 1787–1793 (2013).

    Article  CAS  Google Scholar 

  49. Chabrol, K. et al. Functionalization of synthetic talc-like phyllosilicates by alkoxyorganosilane grafting. J. Mater. Chem. 20, 9695–9706 (2010).

    Article  CAS  Google Scholar 

  50. Mackenzie, K. J. D. & Meinhold, R. H. Thermal reactions of chrysotile revisited: a 29Si and 25Mg MAS NMR study. Am. Mineral. 79, 43–50 (1994).

    CAS  Google Scholar 

  51. Stebbins, J. F., Smyth, J. R., Panero, W. R. & Frost, D. J. Forsterite, hydrous and anhydrous wadsleyite and ringwoodite (Mg2SiO4): 29Si NMR results for chemical shift anisotropy, spin-lattice relaxation, and mechanism of hydration. Am. Mineral. 94, 905–915 (2009).

    Article  CAS  Google Scholar 

  52. Temuujin, J., Okada, K. & MacKenzie, K. J. D. Role of water in the mechanochemical reactions of MgO–SiO2 systems. J. Solid State Chem. 138, 169–177 (1998).

    Article  CAS  Google Scholar 

  53. d’Espinose de la Caillerie, J.-B., Kermarec, M. & Clause, O. 29Si NMR observation of an amorphous magnesium silicate formed during impregnation of silica with Mg(II) in aqueous solution. J. Phys. Chem. 99, 17273–17281 (1995).

    Article  Google Scholar 

  54. Hartman, J. S. & Millard, R. L. Gel synthesis of magnesium silicates: a 29Si magic angle spinning NMR study. Phys. Chem. Miner. 17, 1–8 (1990).

    Article  CAS  Google Scholar 

  55. Benhelal, E. et al. Insights into chemical stability of Mg-silicates and silica in aqueous systems using 25Mg and 29Si solid-state MAS NMR spectroscopy: applications for CO2 capture and utilisation. Chem. Eng. J. 420, 127656 (2021).

    Article  CAS  Google Scholar 

  56. Freitas, J. C. C. & Smith, M. E. Recent advances in solid-state 25Mg NMR spectroscopy. Annu. Rep. NMR Spectrosc. 75, 25–114 (2012).

    Article  CAS  Google Scholar 

  57. Pallister, P. J., Moudrakovski, I. L. & Ripmeester, J. A. Mg-25 ultra-high field solid state NMR spectroscopy and first principles calculations of magnesium compounds. Phys. Chem. Chem. Phys. 11, 11487–11500 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Blanc, F., Middlemiss, D. S., Gan, Z. & Grey, C. P. Defects in doped LaGaO3 anionic conductors: linking NMR spectral features, local environments, and defect thermodynamics. J. Am. Chem. Soc. 133, 17662–17672 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Jäger, C., Kunath, G., Losso, P. & Scheler, G. Determination of distributions of the quadrupole interaction in amorphous solids by 27Al satellite transition spectroscopy. Solid State Nucl. Magn. Reson. 2, 73–82 (1993).

    Article  PubMed  Google Scholar 

  60. Hatakeyama, M., Nemoto, T., Kanehashi, K. & Saito, K. Natural abundance solid-state 25Mg MQMAS NMR studies on inorganic solids at a high magnetic field of 16.4 T. Chem. Lett. 34, 864–865 (2005).

    Article  CAS  Google Scholar 

  61. Hayashi, Y. et al. Experimental and computational studies of the roles of MgO and Zn in talc for the selective formation of 1,3-butadiene in the conversion of ethanol. Phys. Chem. Chem. Phys. 18, 25191–25209 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Chieregato, A. et al. On the chemistry of ethanol on basic oxides: revising mechanisms and intermediates in the Lebedev and Guerbet reactions. ChemSusChem 8, 377–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Sushkevich, V. L. & Ivanova, I. I. Mechanistic study of ethanol conversion into butadiene over silver promoted zirconia catalysts. Appl. Catal. B 215, 36–49 (2017).

    Article  CAS  Google Scholar 

  64. Gruver, V., Sun, A. & Fripiat, J. J. Catalytic properties of aluminated sepiolite in ethanol conversion. Catal. Lett. 34, 359–364 (1995).

    Article  CAS  Google Scholar 

  65. Velasquez Ochoa, J., Malmusi, A., Recchi, C. & Cavani, F. Understanding the role of gallium as a promoter of magnesium silicate catalysts for the conversion of ethanol into butadiene. ChemCatChem 9, 2128–2135 (2017).

    Article  Google Scholar 

  66. Taifan, W. E., Yan, G. X. & Baltrusaitis, J. Surface chemistry of MgO/SiO2 catalyst during the ethanol catalytic conversion to 1,3-butadiene: in-situ DRIFTS and DFT study. Catal. Sci. Technol. 7, 4648–4668 (2017).

    Article  CAS  Google Scholar 

  67. Taifan, W. E. Catalytic Transformation of Ethanol to 1,3-Butadiene over MgO/SiO2 Catalyst. PhD thesis, Lehigh University (2018).

  68. Klein, A., Keisers, K. & Palkovits, R. Formation of 1,3-butadiene from ethanol in a two-step process using modified zeolite-β catalysts. Appl. Catal. A 514, 192–202 (2016).

    Article  CAS  Google Scholar 

  69. Szabó, B. et al. Conversion of ethanol to butadiene over mesoporous In2O3-promoted MgO-SiO2 catalysts. Mol. Catal. 491, 110984 (2020).

    Article  Google Scholar 

  70. Karkanas, P., Bar-Yosef, O., Goldberg, P. & Weiner, S. Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. J. Archaeol. Sci. 27, 915–929 (2000).

    Article  Google Scholar 

  71. Lide, D. R. & Haynes, W. M. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data: 2009–2010 (ed Lide, D. R.) 90th edn (CRC Press, 2009).

  72. Iler, R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (Wiley, 1979).

  73. Ayral, A. et al. Silica membranes—basic principles. Period. Polytech. Chem. Eng. 50, 67–79 (2006).

    CAS  Google Scholar 

  74. Kim, H. N. & Lee, S. K. Atomic structure and dehydration mechanism of amorphous silica: insights from 29Si and 1H solid-state MAS NMR study of SiO2 nanoparticles. Geochim. Cosmochim. Acta 120, 39–64 (2013).

    Article  CAS  Google Scholar 

  75. Alba, M. D., Becerro, A. I., Castro, M. A. & Perdigón, A. C. High-resolution 1H MAS NMR spectra of 21 phyllosilicates. Chem. Commun. 37–38 (2000).

  76. Schnell, I. & Spiess, H. W. High-resolution 1H NMR spectroscopy in the solid state: very fast sample rotation and multiple-quantum coherences. J. Magn. Reson. 151, 153–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Yarulina, I. et al. Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nat. Chem. 10, 804–812 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Ochoa, J. V. et al. An analysis of the chemical, physical and reactivity features of MgO–SiO2 catalysts for butadiene synthesis with the Lebedev process. Green Chem. 18, 1653–1663 (2016).

    Article  CAS  Google Scholar 

  79. Singh, M., Zhou, N., Paul, D. K. & Klabunde, K. J. IR spectral evidence of aldol condensation: acetaldehyde adsorption over TiO2 surface. J. Catal. 260, 371–379 (2008).

    Article  CAS  Google Scholar 

  80. Moteki, T. & Flaherty, D. W. Mechanistic insight to C–C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites. ACS Catal. 6, 4170–4183 (2016).

    Article  CAS  Google Scholar 

  81. Alabugin, I. V., Bresch, S. & dos Passos Gomes, G. Orbital hybridization: a key electronic factor in control of structure and reactivity. J. Phys. Org. Chem. 28, 147–162 (2015).

    Article  CAS  Google Scholar 

  82. Ochoa, J. V., Malmusi, A., Recchi, C. & Cavani, F. Understanding the role of gallium as a promoter of magnesium silicate catalysts for the conversion of ethanol into butadiene. ChemCatChem 9, 2128–2135 (2017).

    Article  CAS  Google Scholar 

  83. Tsuchida, T. et al. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J. Catal. 259, 183–189 (2008).

    Article  CAS  Google Scholar 

  84. Díez, V. K., Apesteguía, C. R. & Di Cosimo, J. I. Acid–base properties and active site requirements for elimination reactions on alkali-promoted MgO catalysts. Catal. Today 63, 53–62 (2000).

    Article  Google Scholar 

  85. Di Cosimo, J. I., Dı́ez, V. K., Xu, M., Iglesia, E. & Apesteguı́a, C. R. Structure and surface and catalytic properties of Mg-Al basic oxides. J. Catal. 178, 499–510 (1998).

    Article  Google Scholar 

  86. Kozlowski, J. T. & Davis, R. J. Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal. 3, 1588–1600 (2013).

    Article  CAS  Google Scholar 

  87. Gines, M. J. L. & Iglesia, E. Bifunctional condensation reactions of alcohols on basic oxides modified by copper and potassium. J. Catal. 176, 155–172 (1998).

    Article  CAS  Google Scholar 

  88. Birky, T. W., Kozlowski, J. T. & Davis, R. J. Isotopic transient analysis of the ethanol coupling reaction over magnesia. J. Catal. 298, 130–137 (2013).

    Article  CAS  Google Scholar 

  89. Abdulrazzaq, H. T., Rahmani Chokanlu, A., Frederick, B. G. & Schwartz, T. J. Reaction kinetics analysis of ethanol dehydrogenation catalyzed by MgO–SiO2. ACS Catal. 10, 6318–6331 (2020).

    Article  CAS  Google Scholar 

  90. Qi, L. et al. Ethanol conversion to butadiene over isolated zinc and yttrium sites grafted onto dealuminated beta zeolite. J. Am. Chem. Soc. 142, 14674–14687 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Idriss, H., Diagne, C., Hindermann, J. P., Kiennemann, A. & Barteau, M. A. Reactions of acetaldehyde on CeO2 and CeO2-supported catalysts. J. Catal. 155, 219–237 (1995).

    Article  CAS  Google Scholar 

  92. Guil, J. M., Homs, N., Llorca, J. & Ramírez de la Piscina, P. Microcalorimetric and infrared studies of ethanol and acetaldehyde adsorption to investigate the ethanol steam reforming on supported cobalt catalysts. J. Phys. Chem. B 109, 10813–10819 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Chavez Diaz, C. D., Locatelli, S. & Gonzo, E. E. Acetaldehyde adsorption on HZSM-5 studied by infrared spectroscopy. Zeolites 12, 851–857 (1992).

    Article  CAS  Google Scholar 

  94. Yan, T. et al. Mechanistic insights into one-step catalytic conversion of ethanol to butadiene over bifunctional Zn–Y/beta zeolite. ACS Catal. 8, 2760–2773 (2018).

    Article  CAS  Google Scholar 

  95. Hemelsoet, K. et al. Experimental and theoretical IR study of methanol and ethanol conversion over H-SAPO-34. Catal. Today 177, 12–24 (2011).

    Article  CAS  Google Scholar 

  96. Aronson, M. T., Gorte, R. J. & Farneth, W. E. An infrared spectroscopy study of simple alcohols adsorbed on H-ZSM-5. J. Catal. 105, 455–468 (1987).

    Article  CAS  Google Scholar 

  97. Sushkevich, V. L., Ivanova, I. I., Ordomsky, V. V. & Taarning, E. Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol. ChemSusChem 7, 2527–2536 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Fan, D., Dong, X., Yu, Y. & Zhang, M. A DFT study on the aldol condensation reaction on MgO in the process of ethanol to 1,3-butadiene: understanding the structure–activity relationship. Phys. Chem. Chem. Phys. 19, 25671–25682 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Dong, X., Liu, C., Fan, D., Yu, Y. & Zhang, M. Insight into the effect of promoters (M = Cu, Ag, Zn, Zr) on aldol condensation reaction based on MgO surface in the process of ethanol to 1,3-butadiene: a comparative DFT study. Appl. Surf. Sci. 481, 576–587 (2019).

    Article  CAS  Google Scholar 

  100. Sudarsanam, P. et al. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 47, 8349–8402 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Deimund, M. A. et al. Effect of heteroatom concentration in SSZ-13 on the methanol-to-olefins reaction. ACS Catal. 6, 542–550 (2016).

    Article  CAS  Google Scholar 

  102. Gallego, E. M. et al. Making nanosized CHA zeolites with controlled Al distribution for optimizing methanol-to-olefin performance. Chem. Eur. J. 24, 14631–14635 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Di Iorio, J. R., Nimlos, C. T. & Gounder, R. Introducing catalytic diversity into single-site chabazite zeolites of fixed composition via synthetic control of active site proximity. ACS Catal. 7, 6663–6674 (2017).

    Article  Google Scholar 

  104. Bernauer, M. et al. Proton proximity—new key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites. J. Catal. 344, 157–172 (2016).

    Article  CAS  Google Scholar 

  105. Tabor, E., Bernauer, M., Wichterlová, B. & Dedecek, J. Enhancement of propene oligomerization and aromatization by proximate protons in zeolites: FTIR study of the reaction pathway in ZSM-5. Catal. Sci. Technol. 9, 4262–4275 (2019).

    Article  CAS  Google Scholar 

  106. Gates-Rector, S. & Blanton, T. The Powder Diffraction File: a quality materials characterization database. Powder Diffr. 34, 352–360 (2019).

    Article  CAS  Google Scholar 

  107. Černý, R., Valvoda, V. & Chládek, M. Empirical texture corrections for asymmetric diffraction and inclined textures. J. Appl. Crystallogr. 28, 247–253 (1995).

    Article  Google Scholar 

  108. Rouquerol, J., Llewellyn, P. & Rouquerol, F. in Studies in Surface Science and Catalysis Vol. 160 (ed Llewellyn, P. L.) 49–56 (Elsevier, 2007).

  109. Dutta Chowdhury, A., Yarulina, I., Abou-Hamad, E., Gurinov, A. & Gascon, J. Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted–Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process. Chem. Sci. 10, 8946–8954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Amoureux, J. P., Fernandez, C. & Steuernagel, S. Z filtering in MQMAS NMR. J. Magn. Reson. A 123, 116–118 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Larsen, F. H., Skibsted, J., Jakobsen, H. J. & Nielsen, N. C. Solid-state QCPMG NMR of low-γ quadrupolar metal nuclei in natural abundance. J. Am. Chem. Soc. 122, 7080–7086 (2000).

    Article  CAS  Google Scholar 

  112. Massiot, D. et al. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from King Abdullah University of Science and Technology. We thank J. Vittenet and E. Kaliyamoorthy for ICP-OES analysis, S. Lopatin for TEM–EDX measurements, C. Canlas for technical support in recording solid-state NMR spectra, Y. Yuan for in situ PXRD measurements and K. Eichele (Universität Tübingen) for WSolids1 software support. The preliminary experiments in this research were performed within the framework of the CatchBio programme. B.M.W. and P.C.A.B. acknowledge the support of the Smart Mix Program of the Netherlands Ministry of Economic Affairs, the Netherlands Ministry of Education, Culture and Science, and NWO (Middelgroot programme, grant no. 700.58.102).

Author information

Authors and Affiliations

Authors

Contributions

S.-H.C. and J.R.-M. conceived the research and directed the project. S.-H.C. designed the experiments and analysed the data. T.L. and A.R. collected and processed the DRIFTS–MS spectra and catalytic activity test results, respectively. T.S., S.K., I.M., G.S., S.T., A.D., E.A.-H., X.T. and P.L. characterized the prepared catalysts under the guidance of S.-H.C., J.G. and J.R.-M. B.S. conducted preliminary experiments for the catalyst synthesis under the supervision of B.M.W. and P.C.A.B. S.-H.C. and J.R.-M. co-wrote the paper. All authors discussed the results and commented on different versions of the manuscript.

Corresponding authors

Correspondence to Sang-Ho Chung or Javier Ruiz-Martínez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Attila Domján and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27, Tables 1–4, Notes 1–6 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, SH., Li, T., Shoinkhorova, T. et al. Origin of active sites on silica–magnesia catalysts and control of reactive environment in the one-step ethanol-to-butadiene process. Nat Catal 6, 363–376 (2023). https://doi.org/10.1038/s41929-023-00945-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00945-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing