Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries

Abstract

Meeting increasing food demands in an environmentally sustainable manner is a worldwide challenge. Applying life cycle analysis to different scenarios, we show that a 47–99% reduction in phosphorus emissions, nitrogen emissions, greenhouse gas emissions, bluewater consumption and cropland use is needed for China’s food production in 2030 to be within national and provincial environmental boundaries. Basic strategies like improving food production efficiency, optimizing fertilizer application, reducing food loss and waste and shifting diets are currently insufficient to keep environmental impacts within national boundaries—particularly those concerning nitrogen. However, intensifying these strategies and reallocating food production from the northern to the southern provinces could keep environmental impacts within both national and provincial boundaries. We conclude that the environmental sustainability of China’s food production requires radical and coordinated action by diverse stakeholders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Required environmental mitigation rates at national and provincial scales.
Fig. 2: Accumulated national environmental mitigation effects in 2030.
Fig. 3: Total mitigation effects of basic and augmented strategies for five environmental impacts.
Fig. 4: Redistribution of environmental impacts and food production for safeguarding provincial environmental boundaries.

Similar content being viewed by others

Data availability

All the source data used in this study are publicly available and open access. Processed data that support the findings of this study are listed in the Supplementary Information and are also available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The codes for data processing and illustration are respectively generated in Matlab 2018a and R 3.6 and are available from the corresponding authors upon reasonable request.

References

  1. Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).

    ADS  CAS  PubMed  Google Scholar 

  2. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Google Scholar 

  3. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    ADS  CAS  PubMed  Google Scholar 

  4. Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

    ADS  CAS  PubMed  Google Scholar 

  5. Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) (IPCC, 2019).

  6. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    ADS  CAS  PubMed  Google Scholar 

  7. Lin, J. Y., Hu, Y. C., Cui, S. H., Kang, J. F. & Xu, L. L. Carbon footprints of food production in China (1979–2009). J. Clean. Prod. 90, 97–103 (2015).

    Google Scholar 

  8. Hu, Y. et al. Evaluating agricultural grey water footprint with modeled nitrogen emission data. Resour. Conserv. Recycl. 138, 64–73 (2018).

    Google Scholar 

  9. Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).

    ADS  CAS  PubMed  Google Scholar 

  10. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  PubMed  Google Scholar 

  11. Cui, S., Shi, Y., Groffman, P. M., Schlesinger, W. H. & Zhu, Y.-G. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc. Natl Acad. Sci. USA 110, 2052–2057 (2013).

    ADS  CAS  PubMed  Google Scholar 

  12. Liu, X. et al. Intensification of phosphorus cycling in China since the 1600s. Proc. Natl Acad. Sci. USA 113, 2609–2614 (2016).

    ADS  CAS  PubMed  Google Scholar 

  13. Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    ADS  CAS  PubMed  Google Scholar 

  14. Häyhä, T., Lucas, P. L., van Vuuren, D. P., Cornell, S. E. & Hoff, H. From Planetary Boundaries to national fair shares of the global safe operating space—how can the scales be bridged?. Glob. Environ. Change 40, 60–72 (2016).

    Google Scholar 

  15. O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Google Scholar 

  16. Ma, L. et al. Exploring future food provision scenarios for china. Environ. Sci. Technol. 53, 1385–1393 (2019).

    ADS  CAS  PubMed  Google Scholar 

  17. Lu, Y. et al. Addressing China’s grand challenge of achieving food security while ensuring environmental sustainability. Sci. Adv. 1, e1400039 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  18. West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    ADS  CAS  PubMed  Google Scholar 

  19. De Vries, W., Kros, J., Kroeze, C. & Seitzinger, S. P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5, 392–402 (2013).

    Google Scholar 

  20. Fang, K., Heijungs, R. & De Snoo, G. R. Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint–boundary environmental sustainability assessment framework. Ecol. Econ. 114, 218–226 (2015).

    Google Scholar 

  21. Boyer, D. & Ramaswami, A. What is the contribution of city-scale actions to the overall food system’s environmental impacts?: Assessing water, greenhouse gas, and land impacts of future urban food scenarios. Environ. Sci. Technol. 51, 12035–12045 (2017).

    ADS  CAS  PubMed  Google Scholar 

  22. He, P., Baiocchi, G., Hubacek, K., Feng, K. & Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nature. Sustainability 1, 122–127 (2018).

    Google Scholar 

  23. Wang, L., Gao, B., Hu, Y., Huang, W. & Cui, S. Environmental effects of sustainability-oriented diet transition in China. Resour. Conserv. Recycl. 158, 104802 (2020).

    Google Scholar 

  24. Zou, J., Fu, S., Yang, Y. & Mao, D. Spatial optimization of agricultural regions under the background of virtual water strategy. Resour. Environ. Yangtze Basin 19, 1427–1432 (2010).

    Google Scholar 

  25. Davis, K. F., Rulli, M. C., Seveso, A. & D’Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 10, 919–924 (2017).

    ADS  CAS  Google Scholar 

  26. Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).

    ADS  CAS  PubMed  Google Scholar 

  27. Herrero, M. et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 1, 266–272 (2020).

    Google Scholar 

  28. Xue, L. et al. Efficiency and carbon footprint of the German meat supply chain. Environ. Sci. Technol. 53, 5133–5142 (2019).

    ADS  CAS  PubMed  Google Scholar 

  29. Willett, W. et al. Food in the anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed  Google Scholar 

  30. Gerten, D. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).

    Google Scholar 

  31. Setboonsarng, S., Leung, P. & Cai, J. Contract Farming and Poverty Reduction: The Case of Organic Rice Contract Farming in Thailand (Asian Development Bank, 2006).

  32. Xu, S. Discussion on agricultural high-quality development and agricultural big data construction. J. Agric. 9, 13–17 (2019).

    Google Scholar 

  33. Liu, Y., Zhang, Z. & Wang, J. Regional differentiation and comprehensive regionalization scheme of modern agriculture in China. Acta Geogr. Sin. 73, 203–219 (2018).

    Google Scholar 

  34. Vargas, L., Willemen, L. & Hein, L. Linking planetary boundaries and ecosystem accounting, with an illustration for the Colombian Orinoco river basin. Reg. Environ. Change 18, 1521–1534 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Algunaibet, I. M. et al. Powering sustainable development within planetary boundaries. Energy Environ. Sci. 12, 1890–1900 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. National Bureau of Statistics of the People’s Republic of China China Statistical Yearbook (China Statistics Press, 2011).

  37. National Development and Reform Commission of the People’s Republic of China National Cost-Benefit Compilation of Agricultural Products (China Statistics Press, 2012).

  38. IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Eggleston, S. et al.) (Institute for Global Environmental Strategies, 2006).

  39. National Bureau of Statistics of the People’s Republic of China China Statistical Yearbook (China Statistics Press, 2016).

  40. Abdelrahman, H. A. & Boyd, C. E. Effects of mechanical aeration on evaporation rate and water temperature in aquaculture ponds. Aquac. Res. 49, 2184–2192 (2018).

    Google Scholar 

  41. State Council of the People’s Republic of China China Economic Census Yearbook 2008 (China Statistics Press, 2010).

  42. National Bureau of Statistics of the People’s Republic of China China Environmental Statistics Yearbook (China Statistics Press, 2012).

  43. Ministry of Agriculture of the People’s Republic of China China Agriculture Yearbook (China Agriculture Press, 2011).

  44. van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5 (2011).

    ADS  Google Scholar 

  45. Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6, 014009 (2011).

    ADS  Google Scholar 

  46. Sadegh, M., Ragno, E. & AghaKouchak, A. Multivariate copula analysis toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resour. Res. 53, 5166–5183 (2017).

    ADS  Google Scholar 

  47. Lu, F. et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no‐tillage in China’s cropland. Glob. Change Biol. 15, 281–305 (2009).

    ADS  Google Scholar 

  48. Zhang, S. et al. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: a case study from Shaanxi Province, northwest China. Agric. Ecosyst. Environ. 209, 89–99 (2015).

    CAS  Google Scholar 

  49. Ju, X.-T. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).

    ADS  CAS  PubMed  Google Scholar 

  50. Yan, Z. et al. Phosphorus in China’s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications. J. Environ. Qual. 42, 982–989 (2013).

    CAS  PubMed  Google Scholar 

  51. Zhang, W.-f. et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl Acad. Sci. USA 110, 8375–8380 (2013).

    ADS  CAS  PubMed  Google Scholar 

  52. Li, H. et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio 44, 274–285 (2015).

    CAS  PubMed Central  Google Scholar 

  53. Liu, J., Lundqvist, J., Weinberg, J. & Gustafsson, J. Food losses and waste in China and their implication for water and land. Environ. Sci. Technol. 47, 10137–10144 (2013).

    ADS  CAS  PubMed  Google Scholar 

  54. Liu, G. Food Losses and Food Waste in China OECD Food, Agriculture and Fisheries Papers No. 66 (OECD Publishing, 2014).

  55. Wang, Y. An industrial ecology virtual framework for policy making in China. Econ. Syst. Res. 29, 252–274 (2017).

    Google Scholar 

  56. Peters, G. P., Andrew, R. & Lennox, J. Constructing an environmentally-extended multi-regional input–output table using the GTAP database. Econ. Syst. Res. 23, 131–152 (2011).

    Google Scholar 

  57. Chen, L. et al. Trans-provincial health impacts of atmospheric mercury emissions in China. Nat. Commun. 10, 1484 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  58. Miller, R. E. & Blair, P. D. Input–Output Analysis: Foundations and Extensions (Cambridge Univ. Press, 2009).

  59. Zhuo, L., Mekonnen, M. & Hoekstra, A. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin. Hydrol. Earth Syst. Sci. 18, 2219–2234 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation for Innovative Research Group (no. 51721093), the Chinese Postdoctoral Science Foundation (2019M663739), the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province (no. 2017A030306032), GDUPS (2017), the Major Program of National Philosophy and Social Science Foundation of China (no. 16ZDA051) and National Natural Science Foundation of China (no. 71874014). We thank Y. Zhou of Guangdong University of Technology and S. Liang of Beijing Normal University for their valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

Y.H., M.S., Z.Y. and F.M. designed this study. Y.H., S.C. and Y.L. developed the dataset for environmental impacts and food system scenarios. Y.W. compiled the disaggregated multiregional input–output table for China. W.Y. set the 2030 baseline for food demand and production in China. Y.H. and C.X. compiled the figures. Y.H., M.S. and C.X. analysed the results. All the authors contributed to the writing.

Corresponding authors

Correspondence to Meirong Su or Zhifeng Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–2 and Tables 1–29.

Reporting Summary

Source data

Source Data Fig. 1

Source data from the model results to generate the bar chart and map in Fig. 1.

Source Data Fig. 2

Source data from the model results to generate the bar charts in Fig. 2.

Source Data Fig. 3

Source data from the model results to generate Fig. 3.

Source Data Fig. 4

Source data from the model results to generate the bar charts and map in Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Su, M., Wang, Y. et al. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nat Food 1, 572–582 (2020). https://doi.org/10.1038/s43016-020-00143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-00143-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene