Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computer-aided food engineering

Abstract

Computer-aided food engineering (CAFE) can reduce resource use in product, process and equipment development, improve time-to-market performance, and drive high-level innovation in food safety and quality. Yet, CAFE is challenged by the complexity and variability of food composition and structure, by the transformations food undergoes during processing and the limited availability of comprehensive mechanistic frameworks describing those transformations. Here we introduce frameworks to model food processes and predict physiochemical properties that will accelerate CAFE. We review how investments in open access, such as code sharing, and capacity-building through specialized courses could facilitate the use of CAFE in the transformation already underway in digital food systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CAFE steps.
Fig. 2: A modelling framework that treats the food as a porous medium for simulating food transformations (for example, raw to dried) during processing.

Similar content being viewed by others

References

  1. Erdogdu, F., Sarghini, F. & Marra, F. Mathematical modeling for virtualization in food processing. Food Eng. Rev. 9, 295–313 (2017).

    Article  Google Scholar 

  2. Phanden, R. K., Sharma, P. & Dubey, A. A review on simulation in digital twin for aerospace, manufacturing and robotics. Mater. Today Proc. 38, 174–178 (2021).

    Article  Google Scholar 

  3. Hyvärinen, M., Jabeen, R. & Kärki, T. The modelling of extrusion processes for polymers—a review. Polymers 12, 1306 (2020).

    Article  PubMed Central  Google Scholar 

  4. Datta, A. K. Computer-Aided Food Manufacturing (Cornell Univ., 2021); https://blogs.cornell.edu/digital-food-manufacturing/industry-examples/

  5. Venkataraman, H., Westerhof, K. & Olson, S. The Digital Transformation of the Food Industry (Lux Research, 2019); https://web.luxresearchinc.com/hubfs/Press%20Release%20Assets/Lux%20Research%20-%20The%20Digital%20Transformation%20of%20the%20Food%20Industry.pdf

  6. Scott, G. & Richardson, P. The application of computational fluid dynamics in the food industry. Trends Food Sci. Technol. 8, 119–124 (1997).

    Article  CAS  Google Scholar 

  7. Dhanasekharan, K. M., Grald, E. W. & Mathur, R. How flow modeling benefits the food industry. Food Technol. 58, 32–35 (2004).

    Google Scholar 

  8. Farid, M. M. Mathematical Modeling of Food Processing (CRC Press, 2010).

  9. Sun, D.-W. Computational Fluid Dynamics in Food Processing (CRC Press, 2019).

  10. Datta, A. K. Toward computer-aided food engineering: mechanistic frameworks for evolution of product, quality and safety during processing. J. Food Eng. 176, 9–27 (2016).

    Article  Google Scholar 

  11. Ball, C. O. Mathematical solution of problems on thermal processing of canned food. Univ. California Publications Pub. Health. 1, 15–245 (1928).

    Google Scholar 

  12. Teixeira, A. A., Dixon, J. R., Zahradnik, J. W. & Zinsmeister, G. E. Computer optimization of nutrient retention in the thermal processing of conduction-heated foods. Food Technol. 23, 137–142 (1969).

    Google Scholar 

  13. Datta, A. K. & Teixeira, A. A. Numerical modeling of natural-convection heating in canned liquid foods. Trans. ASAE 30, 1542–1551 (1987).

    Article  Google Scholar 

  14. Tsukada, T., Sakai, N. & Hayakawa, K.-I. Computerized model for strain-stress analysis of food undergoing simultaneous heat and mass transfer. J. Food Sci. 56, 1438–1445 (1991).

    Article  Google Scholar 

  15. Khankari, K. K., Morey, R. V. & Patankar, S. V. Mathematical-model for moisture diffusion in stored grain due to temperature-gradients. Trans. ASAE 37, 1591–1604 (1994).

    Article  Google Scholar 

  16. Shi, X., Datta, A. K. & Mukherjee, Y. Thermal stresses from large volumetric expansion during freezing of biomaterials. J. Biomech. Eng. 120, 720–726 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, H., Datta, A., Taub, I. & Doona, C. Electromagnetics, heat transfer, and thermokinetics in microwave sterilization. AlChE J. 47, 1957–1968(2001).

    Article  CAS  Google Scholar 

  18. Huang, Z., Marra, F., Subbiah, J. & Wang, S. Computer simulation for improving radio frequency (RF) heating uniformity of food products: a review. Crit. Rev. Food Sci. Nutr. 58, 1033–1057 (2018).

    Article  PubMed  Google Scholar 

  19. Rakesh, V. & Datta, A. Transport in deformable hygroscopic porous media during microwave puffing. AlChE J. 59, 33–45 (2013).

    Article  CAS  Google Scholar 

  20. Ho, Q. T. et al. A three-dimensional multiscale model for gas exchange in fruit. Plant Physiol. 155, 1158–1168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Denys, S., VanLoey, A. M., Hendricks, M. E. & Tobback, P. P. Modeling heat transfer during high-pressure freezing and thawing. Biotechnol. Progr. 13, 416–423 (1997).

    Article  CAS  Google Scholar 

  22. Buckow, R., Schroeder, S., Berres, P., Baumann, P. & Knoerzer, K. Simulation and evaluation of pilot-scale pulsed electric field (PEF) processing. J. Food Eng. 101, 67–77 (2010).

    Article  Google Scholar 

  23. Datta, A. K. & Halder, A. Status of food process modeling and where do we go from here (Synthesis of the outcome from brainstorming. Compr. Rev. Food Sci. Food Safety 7, 117–120 (2008).

  24. Jousse, F., Jongen, T., Agterof, W., Russell, S. & Braat, P. Simplified kinetic scheme of flavor formation by the Maillard reaction. J. Food Sci. 67, 2534–2542 (2002).

    Article  CAS  Google Scholar 

  25. Ho, Q. T. et al. Multiscale modeling in food engineering. J. Food Eng. 114, 279–291 (2013).

    Article  Google Scholar 

  26. Nicolaï, B. M. & Baerdemaeker, J. D. A variance propagation algorithm for the computation of heat conduction under stochastic conditions. Int. J. Heat Mass Transf. 42, 1513–1520 (1999).

    Article  MATH  Google Scholar 

  27. Farid, M. A unified approach to the heat and mass transfer in melting, solidification, frying and different drying processes. Chem. Eng. Sci. 56, 5419–5427 (2001).

    Article  CAS  Google Scholar 

  28. Takhar, P. S. Unsaturated fluid transport in swelling poroviscoelastic biopolymers. Chem. Eng. Sci. 109, 98–110 (2014).

    Article  CAS  Google Scholar 

  29. Schrefler, B. A. Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl. Mech. Rev. 55, 351–388 (2002).

    Article  ADS  Google Scholar 

  30. Gulati, T. & Datta, A. K. Mechanistic understanding of case-hardening and texture development during drying of food materials. J. Food Eng. 166, 119–138 (2015).

    Article  CAS  Google Scholar 

  31. Weerts, A. H., Lian, G. & Martin, D. Modeling rehydration of porous biomaterials: anisotropy effects. J. Food Sci. 68, 937–942 (2003).

    Article  CAS  Google Scholar 

  32. Nicolas, V. et al. Modelling heat and mass transfer in deformable porous media: application to bread baking. J. Food Eng. 130, 23–35 (2014).

    Article  CAS  Google Scholar 

  33. Yamsaengsung, R. & Moreira, R. G. Modeling the transport phenomena and structural changes during deep fat frying—part1: model development. J. Food Eng. 53, 1–10 (2002).

    Article  Google Scholar 

  34. Dhall, A. & Datta, A. K. Transport in deformable food materials: a poromechanics approach. Chem. Eng. Sci. 66, 6482–6497 (2011).

    Article  CAS  Google Scholar 

  35. Ni, H., Datta, A. & Torrance, K. Moisture transport in intensive microwave heating of biomaterials: a multiphase porous media model. Int. J. Heat Mass Transf. 42, 1501–1512 (1999).

    Article  CAS  MATH  Google Scholar 

  36. Warning, A. D., Arquiza, J. M. R. & Datta, A. K. A multiphase porous medium transport model with distributed sublimation front to simulate vacuum freeze drying. Food Bioprod. Process. 94, 637–648 (2015).

    Article  Google Scholar 

  37. Civille, G. V. & Carr, B. T. Sensory Evaluation Techniques (CRC Press, 2015).

  38. Thussu, S. & Datta, A. Texture prediction during deep frying: a mechanistic approach. J. Food Eng. 108, 111–121 (2012).

    Article  Google Scholar 

  39. van Boekel, M. A. J. S. Kinetic modeling of food quality: a critical review. Compr. Rev. Food Sci. Food Safety. 7, 144–158 (2008).

    Article  Google Scholar 

  40. Ranjbaran, M., Carciofi, B. A. M. & Datta, A. K. Engineering modeling frameworks for microbial food safety at various scales. Compr. Rev. Food Sci. Food Safety. 20, 4213–4249 (2021).

    Article  Google Scholar 

  41. Nguyen, P.-M., Goujon, A., Sauvegrain, P. & Vitrac, O. A computer-aided methodology to design safe food packaging and related systems. AlChE J. 59, 1183–1212 (2013).

    Article  CAS  Google Scholar 

  42. Chen, G., Huang, K., Miao, M., Feng, B. & Campanella, O. H. Molecular dynamics simulation for mechanism elucidation of food processing and safety: state of the art. Compr. Rev. Food Sci. Food Safety. 18, 243–263 (2019).

    Article  Google Scholar 

  43. Nguyen, P.-M., Guiga, W., Dkhissi, A. & Vitrac, O. Off-lattice Flory–Huggins approximations for the tailored calculation of activity coefficients of organic solutes in random and block copolymers. Ind. Eng. Chem. Res. 56, 774–787 (2017).

    Article  CAS  Google Scholar 

  44. Zhu, Y., Welle, F. & Vitrac, O. A blob model to parameterize polymer hole free volumes and solute diffusion. Soft Matter 15, 8912–8932 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Zheng, J. The new direction of computational fluid dynamics and its application in industry. J. Phys. Conf. Ser. 1064, 012060 (2018).

    Article  Google Scholar 

  46. Vitrac, O. & Hayert, M. Modeling in food across the scales: towards a universal mass transfer simulator of small molecules in food. SN Appl. Sci. 2, 1509 (2020).

    Article  CAS  Google Scholar 

  47. Touffet, M., Allouche, M. H., Ariane, M. & Vitrac, O. Coupling between oxidation kinetics and anisothermal oil flow during deep-fat frying. Phys. Fluids 33, 085105 (2021).

    Article  ADS  CAS  Google Scholar 

  48. Sinnott, M. D., Harrison, S. M. & Cleary, P. W. A particle-based modelling approach to food processing operations. Food Bioprod. Process. 127, 14–57 (2021).

    Article  CAS  Google Scholar 

  49. Gruyters, W. et al. Modelling cooling of packaged fruit using 3D shape models. Food Bioprocess Technol. 11, 2008–2020 (2018).

    Article  Google Scholar 

  50. Luo, J., Wu, M., Gopukumar, D. & Zhao, Y. Big data application in biomedical research and health care: a literature review. Biomed. Inform. Insights 8, BII.S31559 (2016).

    Article  Google Scholar 

  51. Fisher, O. J. et al. Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems. Comput. Chem. Eng. https://doi.org/10.1016/j.compchemeng.2020.106881 (2020).

  52. Aghbashlo, M., Hosseinpour, S. & Mujumdar, A. S. Application of artificial neural networks (ANNs) in drying technology: a comprehensive review. Drying Technol. 33, 1397–1462 (2015).

    Article  Google Scholar 

  53. Bhagya Raj, G. V. S. & Dash, K. K. Comprehensive study on applications of artificial neural network in food process modeling. Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2020.1858398 (2020).

  54. Zhang, D., Del Rio-Chanona, E. A., Petsagkourakis, P. & Wagner, J. Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization. Biotechnol. Bioeng. 116, 2919–2930 (2019).

    Article  PubMed  Google Scholar 

  55. Islam, M. R., Sablani, S. S. & Mujumdar, A. S. An artificial neural network model for prediction of drying rates. Drying Technol. 21, 1867–1884 (2003).

    Article  Google Scholar 

  56. Gulati, T. & Datta, A. K. Enabling computer-aided food process engineering: property estimation equations for transport phenomena-based models. J. Food Eng. 116, 483–504 (2013).

    Article  Google Scholar 

  57. Dadmohammadi, Y., Kantzas, A., Yu, X. & Datta, A. K. Estimating permeability and porosity of plant tissues: evolution from raw to the processed states of potato. J. Food Eng. 277, 109912 (2020).

    Article  Google Scholar 

  58. van der Sman, R. G. M. & Meinders, M. B. J. Prediction of the state diagram of starch water mixtures using the Flory–Huggins free volume theory. Soft Matter 7, 429–442 (2011).

    Article  ADS  Google Scholar 

  59. van der Sman, R. G. M. Thermodynamics of meat proteins. Food Hydrocoll. 27, 529–535 (2012).

    Article  Google Scholar 

  60. Nguyen, P.-M., Guiga, W. & Vitrac, O. Molecular thermodynamics for food science and engineering. Food Res. Int. 88, 91–104 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Vilgis, T. A. Soft matter food physics—the physics of food and cooking. Rep. Prog. Phys. 78, 124602 (2015).

  62. Madoumier, M., Trystram, G., Sébastian, P. & Collignan, A. Towards a holistic approach for multi-objective optimization of food processes: a critical review. Trends Food Sci. Technol. 86, 1–15 (2019).

    Article  CAS  Google Scholar 

  63. Banga, J. R., Balsa-Canto, E. & Alonso, A. A. Quality and safety models and optimization as part of computer-integrated manufacturing. Compr. Rev. Food Sci. Food Safety. 7, 168–174 (2008).

    Article  Google Scholar 

  64. Erdogdu, F. & Balaban, M. O. Complex method for nonlinear constraned multi-criteria (multi-objective function) optimization of thermal processing. J. Food Process. Eng. 26, 357–375 (2003).

    Article  Google Scholar 

  65. Arias-Mendez, A., Warning, A., Datta, A. K. & Balsa-Canto, E. Quality and safety driven optimal operation of deep-fat frying of potato chips. J. Food Eng. 119, 125–134 (2013).

    Article  CAS  Google Scholar 

  66. Sarghini, F. & De Vivo, A. Application of constrained optimization techniques in optimal shape design of a freezer to dosing line splitter for ice cream production. Food Eng. Rev. 13, 262–273 (2021).

    Article  CAS  Google Scholar 

  67. Topcam, H. & Erdogdu, F. Designing system cavity geometry and optimizing process variables for continuous flow microwave processing. Food Bioprod. Process. 127, 295–308 (2021).

    Article  Google Scholar 

  68. Zhu, Y., Guillemat, B. & Vitrac, O. Rational design of packaging: toward safer and ecodesigned food packaging systems. Front. Chem. https://doi.org/10.3389/fchem.2019.00349 (2019).

  69. Banga, J. R., Balsa-Canto, E., Moles, C. G. & Alonso, A. A. Improving food processing using modern optimization methods. Trends Food Sci. Technol. 14, 131–144 (2003).

    Article  CAS  Google Scholar 

  70. Seifi, F., Azizi, M. J. & Akhavan Niaki, S. T. A data-driven robust optimization algorithm for black-box cases: an application to hyper-parameter optimization of machine learning algorithms. Comput. Ind. Eng. 160, 107581 (2021).

    Article  Google Scholar 

  71. Zhang, J., Datta, A. & Mukherjee, S. Transport processes and large deformation during baking of bread. AlChE J. 51, 2569–2580 (2005).

    Article  CAS  Google Scholar 

  72. Zhang, H. & Datta, A. K. Microwave power absorption in single- and multiple-item foods. Food Bioprod. Process. 81, 257–265 (2003).

    Article  CAS  Google Scholar 

  73. Bimbenet, J.-J., Schubert, H. & Trystram, G. Advances in research in food process engineering as presented at ICEF 9. J. Food Eng. 78, 390–404 (2007).

    Article  Google Scholar 

  74. Altin, O., Marra, F. & Erdogdu, F. Computational study for natural convection effects on temperature during batch and continuous industrial scale radio frequency tempering/thawing processes. J. Food Eng. 312, 110743 (2022).

    Article  Google Scholar 

  75. Klíma, J. et al. Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results. Ultrason. Sonochem. 14, 19–28 (2007).

    Article  PubMed  Google Scholar 

  76. Knoerzer, K., Buckow, R., Trujillo, F. J. & Juliano, P. Multiphysics simulation of innovative food processing technologies. Food Eng. Rev. 7, 64–81 (2015).

    Article  Google Scholar 

  77. Piovesan, A., Vancauwenberghe, V., Van De Looverbosch, T., Verboven, P. & Nicolaï, B. X-ray computed tomography for 3D plant imaging. Trends Plant Sci. 26, 1171–1185 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Nesvadba, P. Database of Physical Properties of Food (Food Properties Awareness Club, 2021); www.nelfood.com

  79. Kansou, K. et al. Food modelling strategies and approaches for knowledge transfer. Trends Food Sci. Technol. 120, 363–373 (2022).

    Article  CAS  Google Scholar 

  80. Filter, M., Plaza-Rodríguez, C., Thoens, C., Kaesbohrer, A. & Appel, B. Towards community driven food safety model repositories. Procedia Food Sci. 7, 105–108 (2016).

    Article  Google Scholar 

  81. Datta, A. Food physics: a multi-level, modularized course. Canvas https://canvas.instructure.com/courses/4317396 (2021).

  82. Wang, Z. et al. Visualizing 3D food microstructure using tomographic methods: advantages and disadvantages. Annu. Rev. Food Sci. Technol. 9, 323–343 (2018).

    Article  PubMed  Google Scholar 

  83. Merenda, M., Porcaro, C. & Iero, D. Edge machine learning for AI-enabled IoT devices: a review. Sensors 20, 2533 (2020).

    Article  ADS  PubMed Central  Google Scholar 

  84. Lassila, T., Manzoni, A., Quarteroni, A. & Rozza, G. in Reduced Order Methods for Modeling and Computational Reduction (eds Quarteroni, A. & Rozza, G.) 235–273 (Springer, 2014).

  85. Ding, M., Han, X., Wang, S., Gast, T. F. & Teran, J. M. A thermomechanical material point method for baking and cooking. ACM Trans. Graph. 38, 192 (2019).

    Article  Google Scholar 

  86. Tao, F. & Qi, Q. Make more digital twins. Nature 573, 490–491 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Verboven, P., Defraeye, T., Datta, A. K. & Nicolai, B. Digital twins of food process operations: the next step for food process models? Curr. Opin. Food Sci. 35, 79–87 (2020).

    Article  Google Scholar 

  88. Koulouris, A., Misailidis, N. & Petrides, D. Applications of process and digital twin models for production simulation and scheduling in the manufacturing of food ingredients and products. Food Bioprod. Process. 126, 317–333 (2021).

    Article  Google Scholar 

  89. Prawiranto, K., Carmeliet, J. & Defraeye, T. Physics-based digital twin identifies trade-offs between drying time, fruit quality, and energy use for solar drying. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2020.606845 (2021).

  90. Gerogiorgis, D. I. & Bakalis, S. Digitalisation of food and beverage manufacturing. Food Bioprod. Process. 128, 259–261 (2021).

    Article  Google Scholar 

  91. Vilas, C., Alonso, A. A., Balsa-Canto, E., López-Quiroga, E. & Trelea, I. C. Model-based real time operation of the freeze-drying process. Processes 8, 325 (2020).

    Article  CAS  Google Scholar 

  92. Piovesan, A. et al. Designing mechanical properties of 3D printed cookies through computer aided engineering. Foods https://doi.org/10.3390/foods9121804 (2020).

  93. Devezeaux De Lavergne, M., Young, A. K., Engmann, J. & Hartmann, C. Food oral processing—an industry perspective. Front. Nutr. https://doi.org/10.3389/fnut.2021.634410 (2021).

  94. Nesheim, M., Oria, M. & Yih, P. Y. A Framework for Assessing Effects of the Food System (National Academies Press, 2015).

  95. Perrot, N., Trelea, I. C., Baudrit, C., Trystram, G. & Bourgine, P. Modelling and analysis of complex food systems: state of the art and new trends. Trends Food Sci. Technol. 22, 304–314 (2011).

    Article  CAS  Google Scholar 

  96. Clancy, K. Digging deeper: transdisciplinary and systems approaches to food security. J. Agric. Food Syst. Community Dev. 7, 13–16 (2017).

    Google Scholar 

  97. Roos, Y. H. et al. Food engineering at multiple scales: case studies, challenges and the future—a European perspective. Food Eng. Rev. 8, 91–115 (2016).

    Article  CAS  Google Scholar 

  98. Bhunnoo, R. The need for a food-systems approach to policy making. Lancet 393, 1097–1098 (2019).

    Article  PubMed  Google Scholar 

  99. Alber, M. et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. npj Digit. Med. 2, 115 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Stachura, S. S., Malajczuk, C. J. & Mancera, R. L. Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field. J. Mol. Model. 24, 174 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.D. gratefully acknowledges financial support from the USDA Agriculture and Food Research Initiative competitive grant no. 2018-67017-27827. B.N. and P.V. gratefully acknowledge financial support from KU Leuven (project C1 C16/16/002), the Research Foundation – Flanders (FWO) (project G090319N) and the European Commission (H-2020 project ENOUGH 101036588). The views expressed in this manuscript are those of the authors and do not necessarily reflect the position or policy of PepsiCo, Inc.

Author information

Authors and Affiliations

Authors

Contributions

A.D. conceptualized and spearheaded the overall process, including editorial integration of individual contributions. B.N. provided editorial integration, critical review and overall focus of the entire manuscript. P.V., B.N. and A.D. produced the diagrams. A.D., B.N., P.V., O.V., F.E., F.M., F.S. and C.K. contributed sections in their individual areas of expertise, and critically reviewed and commented on the overall manuscript. C.K. brought in industrial perspective throughout the document.

Corresponding author

Correspondence to Ashim Datta.

Ethics declarations

Competing interests

C.K. is an employee of PepsiCo R&D. All other authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Aberham Hailu Feyissa, Bruno Carciofi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, A., Nicolaï, B., Vitrac, O. et al. Computer-aided food engineering. Nat Food 3, 894–904 (2022). https://doi.org/10.1038/s43016-022-00617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00617-5

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene