Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Detection and treatment of Alzheimer’s disease in its preclinical stage

Abstract

Longitudinal multimodal biomarker studies reveal that the continuum of Alzheimer’s disease (AD) includes a long latent phase, referred to as preclinical AD, which precedes the onset of symptoms by decades. Treatment during the preclinical AD phase offers an optimal opportunity for slowing the progression of disease. However, trial design in this population is complex. In this Review, we discuss the recent advances in accurate plasma measurements, new recruitment approaches, sensitive cognitive instruments and self-reported outcomes that have facilitated the successful launch of multiple phase 3 trials for preclinical AD. The recent success of anti-amyloid immunotherapy trials in symptomatic AD has increased the enthusiasm for testing this strategy at the earliest feasible stage. We provide an outlook for standard screening of amyloid accumulation at the preclinical stage in clinically normal individuals, during which effective therapy to delay or prevent cognitive decline can be initiated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Continuum of Alzheimer’s disease over 25 years.
Fig. 2: Biomarkers and the amyloid, tau and neurodegeneration (ATN) classification.

Similar content being viewed by others

References

  1. Knopman, D. S. et al. Alzheimer disease. Nat. Rev. Dis. Primers 7, 33 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aisen, P. S. et al. On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimers Res. Ther. 9, 60 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raskin, J., Cummings, J., Hardy, J., Schuh, K. & Dean, R. A. Neurobiology of Alzheimer’s disease: integrated molecular, physiological, anatomical, biomarker, and cognitive dimensions. Curr. Alzheimer Res. 12, 712–722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jack, C. R. Jr et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367, 795–804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fortea, J. et al. Clinical and biomarker changes of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet 395, 1988–1997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dubois, B. et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 13, 614–629 (2014).

    Article  PubMed  Google Scholar 

  9. Donohue, M. C. et al. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA 317, 2305–2316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ossenkoppele, R. et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 28, 2381–2387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aisen, P. S., Jimenez-Maggiora, G. A., Rafii, M. S., Walter, S. & Raman, R. Early-stage Alzheimer disease: getting trial-ready. Nat. Rev. Neurol. 18, 389–399 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. US Department of Health and Human Services, Food and Drug Administration. Guidance for Industry: Early Alzheimer’s Disease: Developing Drugs for Treatment https://www.fda.gov/regulatory-information/search-fda-guidance-documents/alzheimers-disease-developing-drugs-treatment-guidance-industy (2018).

  13. Rowe, C. C. et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging 31, 1275–1283 (2010).

    Article  PubMed  Google Scholar 

  14. Mintun, M. A. et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67, 446–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Jack, C. R. Jr et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131, 665–680 (2008).

    Article  PubMed  Google Scholar 

  16. De Meyer, G. et al. Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch. Neurol. 67, 949–956 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arriagada, P. V., Marzloff, K. & Hyman, B. T. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42, 1681–1688 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Morris, J. C. et al. Cerebral amyloid deposition and diffuse plaques in “normal” aging: evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 46, 707–719 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Villemagne, V. L. et al. Aβ deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer’s disease. Neuropsychologia 46, 1688–1697 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Stonnington, C. M. et al. Fibrillar amyloid correlates of preclinical cognitive decline. Alzheimers Dement. 10, e1–e8 (2014).

    Article  PubMed  Google Scholar 

  21. Moonis, M. et al. Familial Alzheimer disease: decreases in CSF Aβ42 levels precede cognitive decline. Neurology 65, 323–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Klunk, W. E. et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J. Neurosci. 27, 6174–6184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ringman, J. M. et al. Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 71, 85–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Reiman, E. M. et al. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc. Natl Acad. Sci. USA 106, 6820–6825 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boerwinkle, A. H. et al. Comparison of amyloid burden in individuals with Down syndrome versus autosomal dominant Alzheimer’s disease: a cross-sectional study. Lancet Neurol. 22, 55–65 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Pike, K. E. et al. β-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 130, 2837–2844 (2007).

    Article  PubMed  Google Scholar 

  27. Wirth, M. et al. The effect of amyloid β on cognitive decline is modulated by neural integrity in cognitively normal elderly. Alzheimers Dement. 9, 687–698 (2013).

    Article  PubMed  Google Scholar 

  28. Mormino, E. C. et al. Synergistic effect of β-amyloid and neurodegeneration on cognitive decline in clinically normal individuals. JAMA Neurol. 71, 1379–1385 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lim, Y. Y. et al. Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease. Brain 137, 221–231 (2014).

    Article  PubMed  Google Scholar 

  30. Landau, S. M. et al. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann. Neurol. 72, 578–586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Storandt, M., Mintun, M. A., Head, D. & Morris, J. C. Cognitive decline and brain volume loss as signatures of cerebral amyloid-β peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Aβ deposition. Arch. Neurol. 66, 1476–1481 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pietrzak, R. H. et al. Trajectories of memory decline in preclinical Alzheimer’s disease: results from the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing. Neurobiol. Aging 36, 1231–1238 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Jicha, G. A. et al. Preclinical AD Workgroup staging: pathological correlates and potential challenges. Neurobiol. Aging 33, 622.e1–622.e16 (2012).

    Article  PubMed  Google Scholar 

  34. Vos, S. J. et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 12, 957–965 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Knopman, D. S. et al. Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology 78, 1576–1582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Toledo, J. B. et al. CSF Apo-E levels associate with cognitive decline and MRI changes. Acta Neuropathol. 127, 621–632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ryman, D. C. et al. Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology 83, 253–260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Graaf, G., Buckley, F. & Skotko, B. G. Estimation of the number of people with Down syndrome in the United States. Genet. Med. 19, 439–447 (2017).

    Article  PubMed  Google Scholar 

  39. Rafii, M. S., Wishnek, H. & Brewer, J. B. The Down Syndrome Biomarker Initiative (DSBI) pilot: proof of concept for deep phenotyping of Alzheimer’s disease biomarkers in Down syndrome. Front. Behav. Neurosci. 9, 239 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Neale, N., Padilla, C., Fonseca, L. M., Holland, T. & Zaman, S. Neuroimaging and other modalities to assess Alzheimer’s disease in Down syndrome. NeuroImage Clin. 17, 263–271 (2018).

    Article  PubMed  Google Scholar 

  41. Handen, B. L., Cohen, A. D. & Channamalappa, U. Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B. Alzheimers Dement. 8, 496–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Annus, T., Wilson, L. R. & Hong, Y. T. The pattern of amyloid accumulation in the brains of adults with Down syndrome. Alzheimers Dement. 12, 538–545 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lao, P. J., Betthauser, T. J. & Hillmer, A. T. The effects of normal aging on amyloid-β deposition in nondemented adults with Down syndrome as imaged by carbon 11-labeled Pittsburgh compound B. Alzheimers Dement. 12, 380–390 (2016).

    Article  PubMed  Google Scholar 

  44. Fortea, J. et al. Plasma and CSF biomarkers for the diagnosis of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet Neurol. 17, 860–869 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Fleisher, A. S., Chen, K. & Quiroz, Y. T. Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study. JAMA Neurol. 72, 316–324 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rafii, M. S. et al. A randomized, double-blind, placebo-controlled, phase II study of oral ELND005 (scyllo-inositol) in young adults with Down syndrome without dementia. J. Alzheimers Dis. 58, 401–411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rafii, M. S. et al. Safety, tolerability, and immunogenicity of the ACI-24 vaccine in adults with Down syndrome: a phase 1b randomized clinical trial. JAMA Neurol. 79, 565–574 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rafii, M. S. Alzheimer’s disease in Down syndrome: progress in the design and conduct of drug prevention trials. CNS Drugs 34, 785–794 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jack, C. R. Jr et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Knopman, D. S. et al. The National Institute on Aging and the Alzheimer’s Association Research Framework for Alzheimer’s disease: perspectives from the Research Roundtable. Alzheimers Dement. 14, 563–575 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Strikwerda-Brown, C. et al. Association of elevated amyloid and tau positron emission tomography signal with near-term development of Alzheimer disease symptoms in older adults without cognitive impairment. JAMA Neurol. 79, 975–985 (2022).

  52. van der Flier, W. M. & Scheltens, P. The ATN framework—moving preclinical Alzheimer disease to clinical relevance. JAMA Neurol. 79, 968–970 (2022).

    Article  PubMed  Google Scholar 

  53. Soldan, A. et al. ATN profiles among cognitively normal individuals and longitudinal cognitive outcomes. Neurology 92, e1567–e1579 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vos, S. J. B. & Duara, R. The prognostic value of ATN Alzheimer biomarker profiles in cognitively normal individuals. Neurology 92, 643–644 (2019).

    Article  PubMed  Google Scholar 

  55. Delmotte, K. et al. Prognostic value of amyloid/tau/neurodegeneration (ATN) classification based on diagnostic cerebrospinal fluid samples for Alzheimer’s disease. Alzheimers Res. Ther. 13, 84 (2021).

    Article  CAS  Google Scholar 

  56. Allegri, R. F. et al. Prognostic value of ATN Alzheimer biomarkers: 60-month follow-up results from the Argentine Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement. 12, e12026 (2020).

    Google Scholar 

  57. Selvackadunco, S. et al. Comparison of clinical and neuropathological diagnoses of neurodegenerative diseases in two centres from the Brains for Dementia Research (BDR) cohort. J. Neural Transm. 126, 327–337 (2019).

    Article  PubMed  Google Scholar 

  58. Morris, J. C. et al. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch. Neurol. 66, 1469–1475 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vemuri, P. et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 73, 294–301 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fagan, A. M. et al. Decreased cerebrospinal fluid Aβ42 correlates with brain atrophy in cognitively normal elderly. Ann. Neurol. 65, 176–183 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lowe, V. J. et al. Association of hypometabolism and amyloid levels in aging, normal subjects. Neurology 82, 1959–1967 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nettiksimmons, J. et al. Subtypes based on cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline. Neurobiol. Aging 31, 1419–1428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pankratz, V. S. et al. Predicting the risk of mild cognitive impairment in the Mayo Clinic Study of Aging. Neurology 84, 1433–1442 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stomrud, E. et al. Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults. Arch. Neurol. 67, 217–223 (2010).

    Article  PubMed  Google Scholar 

  65. Sutphen, C. L. et al. Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age. JAMA Neurol. 72, 1029–1042 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dumurgier, J. et al. Alzheimer’s disease biomarkers and future decline in cognitive normal older adults. J. Alzheimers Dis. 60, 1451–1459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Farrell, M. E. et al. Defining the lowest threshold for amyloid-PET to predict future cognitive decline and amyloid accumulation. Neurology 96, e619–e631 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Campbell, M. R. et al. P-tau/Aβ42 and Aβ42/40 ratios in CSF are equally predictive of amyloid PET status. Alzheimers Dement. 13, e12190 (2021).

    Google Scholar 

  69. Schindler, S. E. et al. Predicting symptom onset in sporadic Alzheimer disease with amyloid PET. Neurology 97, e1823–e1834 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bourgeat, P. et al. β-amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia. Neurology 74, 121–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Oh, H. et al. β-amyloid affects frontal and posterior brain networks in normal aging. NeuroImage 54, 1887–1895 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Dickerson, B. C. et al. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 19, 497–510 (2009).

    Article  Google Scholar 

  73. Sperling, R. A. et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63, 178–188 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hedden, T. et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29, 12686–12694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mormino, E. C. et al. Relationships between β-amyloid and functional connectivity in different components of the default mode network in aging. Cereb. Cortex 21, 2399–2407 (2011).

  76. Rentz, D. M. et al. Face–name associative memory performance is related to amyloid burden in normal elderly. Neuropsychologia 49, 2776–2783 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chetelat, G. et al. Independent contribution of temporal β-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer’s disease. Brain 134, 798–807 (2011).

    Article  PubMed  Google Scholar 

  78. Nakamura, A. et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554, 249–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Schindler, S. E. et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 93, e1647–e1659 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, Y. et al. Validation of plasma amyloid-β 42/40 for detecting Alzheimer disease amyloid plaques. Neurology 98, e688–e699 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fandos, N. et al. Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals. Alzheimers Dement. 8, 179–187 (2017).

    Google Scholar 

  82. Mattsson, N., Cullen, N. C., Andreasson, U., Zetterberg, H. & Blennow, K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 76, 791–799 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mielke, M. M. et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement. 14, 989–997 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Janelidze, S. et al. Plasma p-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 26, 379–386 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Palmqvist, S. et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status. JAMA Neurol. 76, 1060–1069 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cullen, N. C. et al. Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat. Commun. 12, 3555 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ossenkoppele, R. et al. Accuracy of tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging. JAMA Neurol. 78, 961–971 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rafii, M. S. et al. The AHEAD 3-45 Study: design of a prevention trial for Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1002/alz.12748 (2022).

  89. Johnson, K. A. et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann. Neurol. 79, 110–119 (2016).

    Article  PubMed  Google Scholar 

  90. Insel, P. S. et al. Tau positron emission tomography in preclinical Alzheimer’s disease. Brain 146, 700–711 (2023).

    Article  PubMed  Google Scholar 

  91. Mattsson-Carlgren, N. et al. Prediction of longitudinal cognitive decline in preclinical Alzheimer disease using plasma biomarkers. JAMA Neurol. 80, 360–369 (2023).

  92. Mosconi, L. et al. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol. Aging 29, 676–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Kennedy, A. M. et al. Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease. Neurosci. Lett. 186, 17–20 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. de Leon, M. J. et al. Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-d-glucose/positron-emission tomography (FDG/PET). Proc. Natl Acad. Sci. USA 98, 10966–10971 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jagust, W. J. et al. Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann. Neurol. 59, 673–681 (2006).

    Article  PubMed  Google Scholar 

  96. Serrano, M. E., Kim, E., Petrinovic, M. M., Turkheimer, F. & Cash, D. Imaging synaptic density: the next holy grail of neuroscience? Front. Neurosci. 16, 796129 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mecca, A. P. et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimers Dement. 16, 974–982 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Arvidsson Rådestig, M. et al. Cerebrospinal fluid biomarkers of axonal and synaptic degeneration in a population-based sample. Alzheimers Res. Ther. 15, 44 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zetterberg, H. et al. Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression. JAMA Neurol. 73, 60–67 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ferreira, P. C. L. et al. Plasma biomarkers identify older adults at risk of Alzheimer’s disease and related dementias in a real-world population-based cohort. Alzheimers Dement. https://doi.org/10.1002/alz.12986 (2023).

  101. Pettigrew, C. et al. Progressive medial temporal lobe atrophy during preclinical Alzheimer’s disease. NeuroImage Clin. 16, 439–446 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pettigrew, C. et al. Cortical thickness in relation to clinical symptom onset in preclinical AD. NeuroImage Clin. 12, 116–122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mueller, S. G. et al. Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer’s disease. Hum. Brain Mapp. 31, 1339–1347 (2010).

    Google Scholar 

  104. McRae-McKee, K. et al. Combining hippocampal volume metrics to better understand Alzheimer’s disease progression in at-risk individuals. Sci. Rep. 9, 7499 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Elias, M. F. et al. The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham Cohort. Arch. Neurol. 57, 808–813 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Saxton, J. et al. Preclinical Alzheimer disease: neuropsychological test performance 1.5 to 8 years prior to onset. Neurology 63, 2341–2347 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Donohue, M. C. et al. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 71, 961–970 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bransby, L. et al. Sensitivity of a Preclinical Alzheimer’s Cognitive Composite (PACC) to amyloid β load in preclinical Alzheimer’s disease. J. Clin. Exp. Neuropsychol. 41, 591–600 (2019).

    Article  PubMed  Google Scholar 

  109. Papp, K. V. et al. Sensitivity of the Preclinical Alzheimer’s Cognitive Composite (PACC), PACC5, and Repeatable Battery for Neuropsychological Status (RBANS) to amyloid status in preclinical Alzheimer’s disease—Atabecestat Phase 2b/3 EARLY Clinical Trial. J. Prev. Alzheimers Dis. 9, 255–261 (2022).

    CAS  PubMed  Google Scholar 

  110. Ayutyanont, N. et al. The Alzheimer’s Prevention Initiative Composite Cognitive Test score: sample size estimates for the evaluation of preclinical Alzheimer’s disease treatments in presenilin 1 E280A mutation carriers. J. Clin. Psychiatry 75, 652–660 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Langbaum, J. B. et al. The Alzheimer’s Prevention Initiative Composite Cognitive Test: a practical measure for tracking cognitive decline in preclinical Alzheimer’s disease. Alzheimers Res. Ther. 12, 66 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Amariglio, R. E. et al. Tracking early decline in cognitive function in older individuals at risk for Alzheimer disease dementia: the Alzheimer’s Disease Cooperative Study Cognitive Function Instrument. JAMA Neurol. 72, 446–454 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Li, C. et al. The utility of the Cognitive Function Instrument (CFI) to detect cognitive decline in non-demented older adults. J. Alzheimers Dis. 60, 427–437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Galasko, D. et al. ADCS Prevention Instrument Project: assessment of instrumental activities of daily living for community-dwelling elderly individuals in dementia prevention clinical trials. Alzheimer Dis. Assoc. Disord. 20, S152–S169 (2006).

    Article  PubMed  Google Scholar 

  115. Marshall, G. A. et al. Measuring instrumental activities of daily living in non-demented elderly: a comparison of the new performance-based Harvard Automated Phone Task with other functional assessments. Alzheimers Res. Ther. 11, 4 (2019).

    Article  Google Scholar 

  116. Weintraub, S. et al. Measuring cognition and function in the preclinical stage of Alzheimer’s disease. Alzheimers Dement. 4, 64–75 (2018).

    Article  Google Scholar 

  117. Barnes, D. E. & Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10, 819–828 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ding, J. et al. Antihypertensive medications and risk for incident dementia and Alzheimer’s disease: a meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol. 19, 61–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Marinelli, J. P. et al. Association between hearing loss and development of dementia using formal behavioural audiometric testing within the Mayo Clinic Study of Aging (MCSA): a prospective population-based study. Lancet Healthy Longev. 3, e817–e824 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Middleton, L. E., Barnes, D. E., Lui, L. Y. & Yaffe, K. Physical activity over the life course and its association with cognitive performance and impairment in old age. J. Am. Geriatr. Soc. 58, 1322–1326 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Yiannopoulou, K. G., Anastasiou, A. I., Zachariou, V. & Pelidou, S. H. Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicines 7, 97 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Arndt, J. W. et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci. Rep. 8, 6412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ferrero, J. et al. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement. 2, 169–176 (2016).

    Article  Google Scholar 

  124. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Budd Haeberlein, S. et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J. Prev. Alzheimers Dis. 9, 197–210 (2022).

    CAS  PubMed  Google Scholar 

  126. Ostrowitzki, S. et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch. Neurol. 69, 198–207 (2012).

    Article  PubMed  Google Scholar 

  127. Klein, G. et al. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: a PET substudy interim analysis. Alzheimers Res. Ther. 11, 101 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Doody, R. Clinical Trial in Alzheimer’s Disease (CTAD) meeting, November 29 (2022).

  129. Salloway, S. et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat. Med. 27, 1187–1196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lowe, S. L. et al. Donanemab (LY3002813) phase 1b study in Alzheimer’s disease: rapid and sustained reduction of brain amyloid measured by florbetapir F18 imaging. J. Prev. Alzheimers Dis. 8, 414–424 (2021).

    CAS  PubMed  Google Scholar 

  131. Mintun, M. A. et al. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 384, 1691–1704 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Swanson, C. J. et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res. Ther. 13, 80 (2021).

    Article  CAS  Google Scholar 

  133. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    Article  PubMed  Google Scholar 

  134. Sperling, R. A. et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 7, 367–385 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Barakos, J. et al. Detection and management of amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with anti-amyloid β therapy. J. Prev. Alzheimers Dis. 9, 211–220 (2022).

    CAS  PubMed  Google Scholar 

  136. Piazza, F. et al. Anti-amyloid β autoantibodies in cerebral amyloid angiopathy-related inflammation: implications for amyloid-modifying therapies. Ann. Neurol. 73, 449–458 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Salloway, S. et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 79, 13–21 (2022).

    Article  PubMed  Google Scholar 

  138. Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 311–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Honig, L. S. et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N. Engl. J. Med. 378, 321–330 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Lilly. Lilly provides update on A4 study of solanezumab for preclinical Alzheimer’s disease. investory.lilly.com, https://investor.lilly.com/news-releases/news-release-details/lilly-provides-update-a4-study-solanezumab-preclinical#:~:text=INDIANAPOLIS%2C%20March%208%2C%202023%20%2FPRNewswire%2F%20--%20Eli%20Lilly,known%20as%20the%20preclinical%20stage%20of%20AD%201 (8 March 2023).

  141. Vassar, R. et al. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Egan, M. F. et al. Randomized trial of verubecestat for prodromal Alzheimer’s disease. N. Engl. J. Med. 380, 1408–1420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Henley, D. et al. Preliminary results of a trial of atabecestat in preclinical Alzheimer’s disease. N. Engl. J. Med. 380, 1483–1485 (2019).

    Article  PubMed  Google Scholar 

  145. Wessels, A. M. et al. Efficacy and safety of lanabecestat for treatment of early and mild Alzheimer disease: the AMARANTH and DAYBREAK-ALZ randomized clinical trials. JAMA Neurol. 77, 199–209 (2019).

    Article  PubMed Central  Google Scholar 

  146. Sperling, R. et al. Findings of efficacy, safety, and biomarker outcomes of atabecestat in preclinical Alzheimer disease: a truncated randomized phase 2b/3 clinical trial. JAMA Neurol. 78, 293–301 (2021).

    Article  PubMed  Google Scholar 

  147. McDade, E. et al. The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nat. Rev. Neurol. 17, 703–714 (2021).

    Article  PubMed  Google Scholar 

  148. Congdon, E. E. & Sigurdsson, E. M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 14, 399–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Langbaum, J. B. et al. Recommendations to address key recruitment challenges of Alzheimer’s disease clinical trials. Alzheimers Dement. 19, 696–707 (2023).

    Article  PubMed  Google Scholar 

  150. Indorewalla, K. K., O’Connor, M. K., Budson, A. E., Guess DiTerlizzi, C. & Jackson, J. Modifiable barriers for recruitment and retention of older adults participants from underrepresented minorities in Alzheimer’s disease research. J. Alzheimers Dis. 80, 927–940 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Aisen, P. S. et al. The Trial-Ready Cohort for Preclinical/Prodromal Alzheimer’s Disease (TRC-PAD) project: an overview. J. Prev. Alzheimer’s Dis. 7, 208–212 (2020).

    CAS  Google Scholar 

  152. Aisen, P. S. et al. The Trial-Ready Cohort for Preclinical/Prodromal Alzheimer’s Disease (TRC-PAD) project: an overview. J. Prev. Alzheimers Dis. 7, 208–212 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding support includes U24AG057437 to P.S.A.

Author information

Authors and Affiliations

Authors

Contributions

M.S.R. and P.S.A. contributed to writing this text.

Corresponding author

Correspondence to Michael S. Rafii.

Ethics declarations

Competing interests

M.S.R. reports consulting for AC Immune, Alzheon, Aptah, Biohaven, Ionis and Keystone Bio and grants from the National Institute on Aging. P.S.A. received research support from Eisai, Eli Lilly, Janssen, the Alzheimer’s Association, the NIH and the FNIH and has consulted for ImmunoBrain Checkpoint, Merck and Roche.

Peer review

Peer review information

Nature Aging thanks Leslie Shaw, Rachelle S. Doody and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafii, M.S., Aisen, P.S. Detection and treatment of Alzheimer’s disease in its preclinical stage. Nat Aging 3, 520–531 (2023). https://doi.org/10.1038/s43587-023-00410-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00410-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing