Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

SYNTHETIC BIOLOGY

Redesigning CO2 fixation

Nature has evolved several biosynthetic CO2 fixation pathways for the conversion of CO2 into multi-carbon molecules. Now, a synthetic acetyl-CoA bi-cycle is reported that offers increased carbon efficiency by rewiring carbon fixation and non-oxidative glycolysis with implications for industrial gas fermentation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acetyl-CoA biosynthetic pathways from CO2, with thermodynamic and enzymatic cost analysis.

protein images in dotted circles in panels a and b were created with Biorender.com; panels c and d were reproduced from ref. 8, Springer Nature Ltd.

References

  1. Lüthi, D. et al. Nature 453, 379–382 (2008).

    Article  Google Scholar 

  2. Scown, C. D. & Keasling, J. D. Nat. Biotechnol. 40, 304–307 (2022).

    Article  CAS  Google Scholar 

  3. Preiner, M. et al. Nat. Ecol. Evol. 4, 534–542 (2020).

    Article  Google Scholar 

  4. Russell, M. J. & Martin, W. Trends Biochem. Sci. 29, 358–363 (2004).

    Article  CAS  Google Scholar 

  5. Bar-Even, A., Noor, E. & Milo, R. J. Exp. Bot. 63, 2325–2342 (2012).

    Article  CAS  Google Scholar 

  6. Claassens, N. J., Cotton, C. A. R., Kopljar, D. & Bar-Even, A. Nat. Catal. 2, 437–447 (2019).

    Article  CAS  Google Scholar 

  7. Takors, R. et al. Microb. Biotechnol. 11, 606–625 (2018).

    Article  CAS  Google Scholar 

  8. Wu, C. et al. Nat. Synth. https://doi.org/10.1038/s44160-022-00095-4 (2022).

    Article  Google Scholar 

  9. Ragsdale, S. W. & Pierce, E. Biochim. Biophys. Acta 1784, 1873–1898 (2008).

    Article  CAS  Google Scholar 

  10. Fast, A. G., Schmidt, E. D., Jones, S. W. & Tracy, B. P. Curr. Opin. Biotechnol. 33, 60–72 (2015).

    Article  CAS  Google Scholar 

  11. Bogorad, I. W., Lin, T.-S. & Liao, J. C. Nature 502, 693–697 (2013).

    Article  CAS  Google Scholar 

  12. Song, Y. et al. Proc. Natl Acad. Sci. USA 117, 7516–7523 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Köpke.

Ethics declarations

Competing interests

M.K. is an employee of LanzaTech, a for-profit company commercializing gas fermentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köpke, M. Redesigning CO2 fixation. Nat. Synth 1, 584–585 (2022). https://doi.org/10.1038/s44160-022-00131-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00131-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research