Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prospects and challenges of green ammonia synthesis

Abstract

Ammonia is a chemical commodity in high demand, owing to its use in agriculture as well as its potential as a chemical vector for renewable energy storage and transportation. At present, ammonia synthesis consumes 1–2% of the world’s total energy output while producing 1% of the world’s total carbon emissions. Thus, the development of greener synthetic routes to ammonia is urgently required. In this Review, we discuss the progress and challenges in regard to the technological and economic aspects of various routes to green ammonia synthesis. Fundamental mechanisms, including the classical N2 dissociative process, the newly identified associative process for catalytic N2 conversion to NH3 under milder conditions and the chemical looping pathway, are discussed to guide novel catalyst designs. In particular, associative N2 activation can be achieved at low pressure, which is more adaptable for coupling to renewable energy (such as solar, wind or tidal), offering a new industrial production route to green ammonia. Additional possibilities for direct large-scale green ammonia synthesis through electrochemical and photochemical approaches are also discussed. Finally, a scaleup roadmap for ammonia synthesis is described alongside recent industrial developments, highlighting the rapid evolution and prosperous future of green ammonia generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the different ammonia synthesis configurations.
Fig. 2: Illustration of BEP scaling factors and the Sabatier principle for ammonia synthesis.
Fig. 3: Simple schematic of associative and dissociative mechanisms for ammonia synthesis.
Fig. 4: Schematic of the direct synthesis of green ammonia.
Fig. 5: Overview of the costs of KBR and gas switching reforming ammonia synthesis plants.
Fig. 6: Roadmap and timeline for development in ammonia synthesis.

Similar content being viewed by others

References

  1. Bell, T. E. & Torrente-Murciano, L. H2 production via ammonia decomposition using non-noble metal catalysts: a review. Top. Catal. 59, 1438–1457 (2016).

    CAS  Google Scholar 

  2. Kojima, Y. Hydrogen storage materials for hydrogen and energy carriers. Int. J. Hydrog. Energy 44, 18179–18192 (2019).

    CAS  Google Scholar 

  3. Smith, C., Hill, A. K. & Torrente-Murciano, L.Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Google Scholar 

  4. Ravi, M. & Makepeace, J. W.Facilitating green ammonia manufacture under milder conditions: what do heterogeneous catalyst formulations have to offer. Chem. Sci. 13, 890–908 (2022).

    CAS  PubMed  Google Scholar 

  5. Bañares-Alcántara, R. et al. Analysis of Islanded Ammonia-based Energy Storage Systems (Univ. Oxford, 2015).

  6. Wang, Q., Guo, J. & Chen, P. Recent progress towards mild-condition ammonia synthesis. J. Energy Chem. 36, 25–36 (2019).

    Google Scholar 

  7. Ghavam, S., Vahdati, M., Wilson, I. A. G. & Styring, P. Sustainable ammonia production processes. Front. Energy Res. 9, 580808 (2021).

    Google Scholar 

  8. Bellenger, R., Darnajoux, X., Zhang, A. M. L. & Kraepiel, J. P. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry 149, 53–73 (2020).

    Google Scholar 

  9. Hywind Scotland (Equinor, 2022); https://www.equinor.com/energy/hywind-scotland

  10. Offshore Solutions (Siemens Energy Global, 2022); https://www.siemens-energy.com/global/en/offerings/industrial-applications/oil-gas/offshore-solutions.html

  11. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Google Scholar 

  12. Walter, M. D. Ammonia formation revisited. Nat. Chem. 14, 12–13 (2021).

    Google Scholar 

  13. Mortensen, J. J., Hansen, L. B., Hammer, B. & Nørskov, J. K. et al. Nitrogen adsorption and dissociation on Fe(111). J. Catal. 182, 479–488 (1999).

    CAS  Google Scholar 

  14. Ertl, G. Reactions at surfaces: from atoms to complexity. Angew. Chem. Int. Ed. 47, 3524–3535 (2007).

    Google Scholar 

  15. Qian, J., An, Q., Fortunelli, A., Nielsen, R. J. & Goddard, W. A. Reaction mechanism and kinetics for ammonia synthesis on the Fe(111) surface. J. Am. Chem. Soc. 140, 6288–6297 (2018).

    CAS  PubMed  Google Scholar 

  16. Lin, R. J., Li, F. Y. & Chen, H. L. Computational investigation on adsorption and dissociation of the NH3 molecule on the Fe(111) surface. J. Phys. Chem. C 115, 521–528 (2011).

    CAS  Google Scholar 

  17. Egeberg, R. C. et al. N2 dissociation on Fe(110) and Fe/Ru(0001): what is the role of steps? Surf. Sci. 491, 183–194 (2001).

    CAS  Google Scholar 

  18. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    CAS  Google Scholar 

  19. Rod, T. H., Logadottir, A. & Nørskov, J. K. Ammonia synthesis at low temperatures. J. Chem. Phys. 112, 5343–5347 (2000).

    CAS  Google Scholar 

  20. Humphreys, J., Lan, R. & Tao, S. Development and recent progress on ammonia synthesis catalysts for Haber–Bosch process. Adv. Energy Sustain. Res. 2, 2000043 (2021).

    CAS  Google Scholar 

  21. Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    CAS  PubMed  Google Scholar 

  22. Fang, H. et al. Challenges and opportunities of Ru-based catalysts toward the synthesis and utilization of ammonia. ACS Catal. 12, 3938–3954 (2022).

    CAS  Google Scholar 

  23. Arnaiz del Pozo, C. & Cloete, S. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Convers. Manag. 255, 115312 (2022).

    CAS  Google Scholar 

  24. Sato, K. & Nagaoka, K. Boosting ammonia synthesis under mild reaction conditions by precise control of the basic oxide–Ru interface. Chem. Lett. 50, 687–696 (2021).

    CAS  Google Scholar 

  25. Sato, K. et al. Surface dynamics for creating highly active Ru sites for ammonia synthesis: accumulation of a low-crystalline, oxygen-deficient nanofraction. ACS Sustain. Chem. Eng. 8, 2726–2734 (2020).

    CAS  Google Scholar 

  26. Lin, B. et al. Morphology effect of ceria on the catalytic performances of Ru/CeO2 catalysts for ammonia synthesis. Ind. Eng. Chem. Res. 57, 9127–9135 (2018).

    CAS  Google Scholar 

  27. Marakatti, V. S. & Gaigneaux, E. M. Recent advances in heterogeneous catalysis for ammonia synthesis. ChemCatChem 12, 5838–5857 (2020).

    CAS  Google Scholar 

  28. Feng, J. et al. Sub-nanometer Ru clusters on ceria nanorods as efficient catalysts for ammonia synthesis under mild conditions. ACS Sustain. Chem. Eng. 10, 10181–10191 (2022).

    CAS  Google Scholar 

  29. Wu, S. et al. Removal of hydrogen poisoning by electrostatically polar MgO support for low-pressure NH3 synthesis at a high rate over the Ru catalyst. ACS Catal. 10, 5614–5622 (2020).

    CAS  Google Scholar 

  30. Wu, S. et al. Rapid interchangeable hydrogen, hydride, and proton species at the interface of transition metal atom on oxide surface. J. Am. Chem. Soc. 143, 9105–9112 (2021).

    CAS  PubMed  Google Scholar 

  31. Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    CAS  PubMed  Google Scholar 

  32. Kitano, M. et al. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 6, 6731 (2015).

    CAS  PubMed  Google Scholar 

  33. Kammert, J. et al. Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst. J. Am. Chem. Soc. 142, 7655–7667 (2020).

    CAS  PubMed  Google Scholar 

  34. Wu, J. et al. Intermetallic electride catalyst as a platform for ammonia synthesis. Angew. Chem. Int. Ed. 58, 825–829 (2019).

    CAS  Google Scholar 

  35. Gong, Y. et al.LaRuSi electride disrupts the scaling relations for ammonia synthesis. Chem. Mater. 34, 1677–1685 (2022).

    CAS  Google Scholar 

  36. Zhang, X. et al. Synergizing surface hydride species and Ru clusters on Sm2O3 for efficient ammonia synthesis. ACS Catal. 12, 2178–2190 (2022).

    CAS  Google Scholar 

  37. García-García, F. R., Guerrero-Ruiz, A. & Rodríguez-Ramos, I. Role of B5-type sites in Ru catalysts used for the NH3 decomposition reaction. Top. Catal. 52, 758–764 (2009).

    Google Scholar 

  38. Shetty, S., Jansen, A. P. J. & Van Santen, R. A. Active sites for N2 dissociation on ruthenium. J. Phys. Chem. C 112, 17768–17771 (2008).

    CAS  Google Scholar 

  39. Wang, L., Chen, J., Ge, L., Rudolph, V. & Zhu, Z. Difference in the cooperative interaction between carbon nanotubes and Ru particles loaded on their internal/external surface. RSC Adv. 3, 12641–12647 (2013).

    CAS  Google Scholar 

  40. Li, L. et al. Size sensitivity of supported Ru catalysts for ammonia synthesis: from nanoparticles to subnanometric clusters and atomic clusters. Chem 8, 749–768 (2022).

    CAS  Google Scholar 

  41. Zhou, Y. et al. Unraveling the size-dependent effect of Ru-based catalysts on ammonia synthesis at mild conditions. J. Catal. 404, 501–511 (2021).

    CAS  Google Scholar 

  42. Zeinalipour-Yazdi, C. D., Richard, C., Catlow, A., Hargreaves, J. S. J. & Laassiri, S. A comparative analysis of the mechanisms of ammonia synthesis on various catalysts using density functional theory. R. Soc. Open Sci. 8, 210952 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kojima, R. & Aika, K. I. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis. Chem Lett. 29, 514–515 (2003).

    Google Scholar 

  44. Zeinalipour-Yazdi, C. D., Hargreaves, J. S. J., Richard, C. & Catlow, A. Low-T mechanisms of ammonia synthesis on Co3Mo3N. J. Phys. Chem. C 122, 6078–6082 (2018).

    CAS  Google Scholar 

  45. Zeinalipour-Yazdi, C. D., Hargreaves, J. S. J., Laassiri, S., Richard, C. & Catlow, A. The integration of experiment and computational modelling in heterogeneously catalysed ammonia synthesis over metal nitrides. Phys. Chem. Chem. Phys. 20, 21803–21808 (2018).

    CAS  PubMed  Google Scholar 

  46. Ye, T.-N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    CAS  PubMed  Google Scholar 

  47. Ye, T.-N. et al. Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts. J. Am. Chem. Soc. 142, 14374–14383 (2020).

    CAS  PubMed  Google Scholar 

  48. Wang, Q. et al. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 4, 959–967 (2021).

    CAS  Google Scholar 

  49. Hattori, M., Iijima, S., Nakao, T., Hosono, H. & Hara, M. Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C. Nat. Commun. 11, 2001 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, J.-C. et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 9, 1610 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Zheng, J. et al. Efficient non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low pressure. Angew. Chem. Int. Ed. 58, 17335–17341 (2019).

    CAS  Google Scholar 

  52. Wang, X. et al. Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia via an associative mechanism. ACS Catal. 10, 9504–9514 (2020).

    CAS  Google Scholar 

  53. Ye, T.-N. et al. Dissociative and associative concerted mechanism for ammonia synthesis over Co-based catalyst. J. Am. Chem. Soc. 143, 12857–12866 (2021).

    CAS  PubMed  Google Scholar 

  54. Zhou, Y. et al. Integrating dissociative and associative routes for efficient ammonia synthesis over a TiCN-promoted Ru-based catalyst. ACS Catal. 12, 2651–2660 (2022).

    CAS  Google Scholar 

  55. Lai, Q. et al. Chemical looping based ammonia production—a promising pathway for production of the noncarbon fuel. Sci. Bull. 67, 2124–2138 (2022).

    CAS  Google Scholar 

  56. Gao, W. et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 3, 1067–1075 (2018).

    CAS  Google Scholar 

  57. Yan, H. et al. Lithium palladium hydride promotes chemical looping ammonia synthesis mediated by lithium imide and hydride. J. Phys. Chem. C 125, 6716–6722 (2021).

    CAS  Google Scholar 

  58. Yang, S. et al. Molybdenum-based nitrogen carrier for ammonia production via a chemical looping route. Appl. Catal. B Environ. 312, 121404 (2022).

    CAS  Google Scholar 

  59. Tagawa, K., Gi, H., Shinzato, K., Miyaoka, H. & Ichikawa, T. Improvement of kinetics of ammonia synthesis at ambient pressure by the chemical looping process of lithium hydride. J. Phys. Chem. C 126, 2403–2409 (2022).

    CAS  Google Scholar 

  60. Xiong, C. et al. High thermal stability Si–Al based N-carrier for efficient and stable chemical looping ammonia generation. Appl. Energy 323, 119519 (2022).

    CAS  Google Scholar 

  61. Pereira, R. J. L., Hu, W. & Metcalfe, I. S. Impact of gas–solid reaction thermodynamics on the performance of a chemical looping ammonia synthesis process. Energy Fuels 36, 9757–9767 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jain, M., Muthalathu, R. & Wu, X. Y. Electrified ammonia production as a commodity and energy storage medium to connect the food, energy, and trade sectors. iScience 25, 104724 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lazouski, N., Chung, M., Williams, K., Gala, M. L. & Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 3, 463–469 (2020).

    CAS  Google Scholar 

  64. Suryanto, B. H. R. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    CAS  Google Scholar 

  65. Wang, M. et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 10, 341 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, G. F. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 5, 605–613 (2020).

    CAS  Google Scholar 

  67. Wu, Z. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shen, H. et al. Electrochemical ammonia synthesis: mechanistic understanding and catalyst design. Chem 7, 1708–1754 (2021).

    CAS  Google Scholar 

  69. Lazouski, N., Schiffer, Z. J., Williams, K. & Manthiram, K. Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule 3, 1127–1139 (2019).

    CAS  Google Scholar 

  70. Suryanto, B. H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    CAS  PubMed  Google Scholar 

  71. Du, H. L. et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature 609, 722–727 (2022).

    CAS  PubMed  Google Scholar 

  72. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    CAS  PubMed  Google Scholar 

  73. Li, S. et al. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid–electrolyte interphase. Joule 6, 2083–2101 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Murakami, T., Nohira, T., Goto, T., Ogata, Y. H. & Ito, Y. Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure. Electrochim. Acta 50, 5423–5426 (2005).

    CAS  Google Scholar 

  75. McPherson, I. J. et al. The feasibility of electrochemical ammonia synthesis in molten LiCl–KCl eutectics. Angew. Chem. Int. Ed. 58, 17433–17441 (2019).

    CAS  Google Scholar 

  76. McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 10, 1621–1630 (2017).

    CAS  Google Scholar 

  77. Wu, S., Salmon, N., Li, M. M. J., Bañares-Alcántara, R. & Tsang, S. C. E. Energy decarbonization via green H2 or NH3? ACS Energy Lett. 7, 1021–1033 (2022).

    CAS  Google Scholar 

  78. Biswas, S. S., Saha, A. & Eswaramoorthy, M. Facts or artifacts: pitfalls in quantifying sub-ppm levels of ammonia produced from electrochemical nitrogen reduction. ACS Omega 7, 1874–1882 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    CAS  PubMed  Google Scholar 

  80. Han, Q., Jiao, H., Xiong, L. & Tang, J. Progress and challenges in photocatalytic ammonia synthesis. Mater. Adv. 2, 564–581 (2021).

    CAS  Google Scholar 

  81. Zhang, G. S vacancies act as a bridge to promote electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis. Chem. Eng. J. 433, 133670 (2022).

    CAS  Google Scholar 

  82. Han, Q. et al. Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis. Adv. Mater. 33, 2008180 (2021).

    CAS  Google Scholar 

  83. Yin, H. et al. Dual active centers bridged by oxygen vacancies of ruthenium single-atom hybrids supported on molybdenum oxide for photocatalytic ammonia synthesis. Angew. Chem. Int. Ed. 61, e202114242 (2022).

    CAS  Google Scholar 

  84. Liu, G. et al. Boosting photocatalytic nitrogen reduction to ammonia by dual defective -C≡N and K-doping sites on graphitic carbon nitride nanorod arrays. Appl. Catal. B Environ. 317, 121752 (2022).

    CAS  Google Scholar 

  85. Kim, S., Park, Y., Kim, J., Pabst, T. P. & Chirik, P. J. Ammonia synthesis by photocatalytic hydrogenation of a N2-derived molybdenum nitride. Nat. Synth. 1, 297–303 (2022).

    Google Scholar 

  86. Wang, M. et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes? Energy Environ. Sci. 14, 2535–2548 (2021).

    CAS  Google Scholar 

  87. Wang, T. & Abild-Pedersen, F. Achieving industrial ammonia synthesis rates at near-ambient conditions through modified scaling relations on a confined dual site. Proc. Natl Acad. Sci. USA 118, 2106527118 (2021).

    Google Scholar 

  88. Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2, 377–380 (2019).

    CAS  Google Scholar 

  89. Grigoriev, S. A., Fateev, V. N., Bessarabov, D. G. & Millet, P. Current status, research trends, and challenges in water electrolysis science and technology. Int. J. Hydrog. Energy 45, 26036–26058 (2020).

    CAS  Google Scholar 

  90. Morlanés, N. et al. A technological roadmap to the ammonia energy economy: current state and missing technologies. Chem. Eng. J. 408, 127310 (2021).

    Google Scholar 

  91. MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020).

    CAS  Google Scholar 

  92. Ye, L., Nayak-Luke, R., Bañares-Alcántara, R. & Tsang, E. Reaction: ‘green’ ammonia production. Chem 3, 712–714 (2017).

    CAS  Google Scholar 

  93. Hansen, J. B., Han, P. Green Ammonia by Haldor Topsoe (Department of Energy, 2021); https://www.energy.gov/sites/default/files/2021-08/4-green-ammonia-haldor-topsoe.pdf

  94. Hansen, J. B. High Efficient Ammonia Synthesis Systems (Ammonia Energy Association, 2019); https://www.ammoniaenergy.org/wp-content/uploads/2021/06/1.1-John-Hansen-NH3-Event-Melbourne-Topsoe-2019.pdf

  95. Small-Scale Green Ammonia Plants Open up New Storage Possibilities for Wind and Solar Power (ThyssenKrupp Industrial Solutions, 2022); https://insights.thyssenkrupp-industrial-solutions.com/story/small-scale-green-ammonia-plants-open-up-new-storage-possibilities-for-wind-and-solar-power/

  96. Yara Selects Linde Engineering to Build Electrolysis Plant at Porsgrunn (Ammonia Energy Association, 2022); https://www.ammoniaenergy.org/articles/yara-selects-linde-engineering-to-build-electrolysis-plant-at-porsgrunn/

  97. Renewable Ammonia in Vietnam (Ammonia Energy Association, 2022); https://www.ammoniaenergy.org/articles/renewable-ammonia-in-vietnam/

  98. ABS Publishes Offshore Production of Green Hydrogen (American Bureau of Shipping, 2022); https://absinfo.eagle.org/acton/media/16130/offshore-production-of-green-hydrogen

  99. The P2XFloaterTM (H2CARRIER, 2022); https://www.h2carrier.com/the-p2x-floater

  100. Gerretsen, I. The floating solar panels that track the Sun. BBC Future (18 November 2022); https://www.bbc.com/future/article/20221116-the-floating-solar-panels-that-track-the-sun

  101. Hong, J., Prawer, S. & Murphy, A. B. Plasma catalysis as an alternative route for ammonia production: status, mechanisms, and prospects for progress. ACS Sustain. Chem. Eng. 6, 15–31 (2017).

    Google Scholar 

  102. Engelmann, Y. et al. Plasma catalysis for ammonia synthesis: a microkinetic modeling study on the contributions of Eley–Rideal reactions. ACS Sustain. Chem. Eng. 9, 13151–13163 (2021).

    CAS  Google Scholar 

  103. Lee, K. et al. Techno-economic performances and life cycle greenhouse gas emissions of various ammonia production pathways including conventional, carbon-capturing, nuclear-powered, and renewable production. Green Chem. 24, 4830–4844 (2022).

    CAS  Google Scholar 

  104. Mills, A. et al. Qatar to build world’s largest ‘blue’ ammonia plant—QatarEnergy. Reuters (1 September 2022); https://www.reuters.com/business/energy/qatar-build-worlds-largest-blue-ammonia-plant-qatarenergy-ceo-2022-08-31/

  105. Frohlke, U. Topsoe and First Ammonia launch zero emission ammonia production with the world’s largest reservation of electrolyzer capacity. Topsoe (14 September 2022); https://blog.topsoe.com/topsoe-and-first-ammonia

Download references

Acknowledgements

We acknowledge financial support from the Engineering and Physical Sciences Research Council Divisional Cooperative Awards in Science and Technology Conversion Incentivisation Scheme and OXGRIN. Credit: fertilizer/mechanical understanding icons in the graphical abstract, Flaticon.com.

Author information

Authors and Affiliations

Authors

Contributions

S.C.E.T. and D.Y. contributed to the discussion and wrote the manuscript.

Corresponding author

Correspondence to Shik Chi Edman Tsang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, D., Tsang, S.C.E. Prospects and challenges of green ammonia synthesis. Nat. Synth 2, 612–623 (2023). https://doi.org/10.1038/s44160-023-00321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00321-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing