Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nature-inspired interfacial engineering for energy harvesting

Abstract

The ever-increasing demand for low-carbon energy underscores the urgency of harvesting renewable energy sources. Despite notable progress, current energy harvesting techniques are still limited by low efficacy and poor durability. Biological systems exhibit diverse principles of energy harvesting owing to their ability to interact with the environment. In this Review, we explore diverse energy harvesting processes in nature to establish a fundamental understanding of nature’s strategies and provide a biomimicry design blueprint for high-efficiency energy harvesting systems. Next, we systematically discuss recent progress in nature-inspired surface/interface designs for efficient energy harvesting from water, sunlight and heat. We then highlight emerging hybrid approaches that can integrate multiple energy conversion processes within a single design through interface engineering to achieve mutual reinforcement. Finally, we deliberate on remaining fundamental and technical challenges to guide future research directions and potential applications of sustainable energy harvesting.

Key points

  • Exploring diverse energy harvesting processes in nature to establish a fundamental understanding of nature’s strategies in energy manipulation.

  • Probing nature-inspired surface regulation for efficiently transformating environmental energy source inputs to energy outputs.

  • From the perspective of the phase state, summarizing interface engineering involved in water, sunlight and heat energy harvesting.

  • Systematically discussing recent progress in nature-inspired interface designs for water, sunlight and heat energy harvesting.

  • Highlighting emerging hybrid energy harvesting systems to achieve mutual reinforcement through interface engineering.

  • Presenting perspectives on remaining challenges and future directions in nature-inspired interfacial engineering for energy harvesting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energy harvesting in nature.
Fig. 2: Nature-inspired engineering for hydrophilic surface-based water energy harvesting.
Fig. 3: Nature-inspired engineering for hydrophobic surface-based water energy harvesting.
Fig. 4: Nature-inspired engineering for solar energy harvesting at a gas (air)–solid interface.
Fig. 5: Nature-inspired engineering for heat energy harvesting.
Fig. 6: Hybrid energy harvesting.

Similar content being viewed by others

References

  1. Welsby, D., Price, J., Pye, S. & Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 597, 230–234 (2021).

    Article  Google Scholar 

  2. Zou, C., Zhao, Q., Zhang, G. & Xiong, B. Energy revolution: from a fossil energy era to a new energy era. Nat. Gas. Ind. B 3, 1–11 (2016).

    Article  Google Scholar 

  3. Xu, W. et al. A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020).

    Article  Google Scholar 

  4. Zhang, Z. et al. Emerging hydrovoltaic technology. Nat. Nanotechnol. 13, 1109–1119 (2018).

    Article  Google Scholar 

  5. Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016).

    Article  Google Scholar 

  6. Benyus, J. M. Biomimicry: Innovation Inspired by Nature (Morrow, 1997).

  7. Stuart-Fox, D. et al. Bio-informed materials: three guiding principles for innovation informed by biology. Nat. Rev. Mater. 8, 565–567 (2023).

    Article  Google Scholar 

  8. Wang, Y., Zhao, W., Han, M., Xu, J. & Tam, K. C. Biomimetic surface engineering for sustainable water harvesting systems. Nat. Water 1, 587–601 (2023).

    Article  Google Scholar 

  9. Feng, S. et al. Three-dimensional capillary ratchet-induced liquid directional steering. Science 373, 1344–1348 (2021).

    Article  Google Scholar 

  10. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  Google Scholar 

  11. An, S. et al. Biological and bioinspired thermal energy regulation and utilization. Chem. Rev. 123, 7081–7118 (2023).

    Article  Google Scholar 

  12. Luo, D. et al. Autonomous self-burying seed carriers for aerial seeding. Nature 614, 463–470 (2023).

    Article  Google Scholar 

  13. Jung, W., Kim, W. & Kim, H.-Y. Self-burial mechanics of hygroscopically responsive awns. Integr. Comp. Biol. 54, 1034–1042 (2014).

    Article  Google Scholar 

  14. Dawson, C., Vincent, J. F. V. & Rocca, A.-M. How pine cones open. Nature 390, 668 (1997).

    Article  Google Scholar 

  15. Poppinga, S., Correa, D., Bruchmann, B., Menges, A. & Speck, T. Plant movements as concept generators for the development of biomimetic compliant mechanisms. Integr. Comp. Biol. 60, 886–895 (2020).

    Article  Google Scholar 

  16. Webster, J., Davey, R. A., Duller, G. A. & Ingold, C. T. Ballistospore discharge in Itersonilia perplexans. Trans. Br. Mycol. Soc. 82, 13–29 (1984).

    Article  Google Scholar 

  17. Li, J. et al. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys. 12, 606–612 (2016).

    Article  Google Scholar 

  18. van Leeuwen, J. L. Launched at 36,000g. Science 329, 395–396 (2010).

    Article  Google Scholar 

  19. Whitaker, D. L. & Edwards, J. Sphagnum moss disperses spores with vortex rings. Science 329, 406 (2010).

    Article  Google Scholar 

  20. Noblin, X. et al. The fern sporangium: a unique catapult. Science 335, 1322 (2012).

    Article  Google Scholar 

  21. Ma, M., Guo, L., Anderson, D. G. & Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186–189 (2013).

    Article  Google Scholar 

  22. Chen, X., Mahadevan, L., Driks, A. & Sahin, O. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat. Nanotechnol. 9, 137–141 (2014).

    Article  Google Scholar 

  23. Lv, J. et al. Solar utilization beyond photosynthesis. Nat. Rev. Chem. 7, 91–105 (2023).

    Article  Google Scholar 

  24. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    Article  Google Scholar 

  25. Soudi, N., Nanayakkara, S., Jahed, N. M. & Naahidi, S. Rise of nature-inspired solar photovoltaic energy convertors. Sol. Energy 208, 31–45 (2020).

    Article  Google Scholar 

  26. Hünig, R. et al. Flower power: exploiting plants’ epidermal structures for enhanced light harvesting in thin-film solar cells. Adv. Opt. Mater. 4, 1487–1493 (2016).

    Article  Google Scholar 

  27. Proppe, A. H. et al. Bioinspiration in light harvesting and catalysis. Nat. Rev. Mater. 5, 828–846 (2020).

    Article  Google Scholar 

  28. Ren, J. et al. Biological material interfaces as inspiration for mechanical and optical material designs. Chem. Rev. 119, 12279–12336 (2019).

    Article  Google Scholar 

  29. Ishay, J. S., Benshalom-Shimony, T., Ben-Shalom, A. & Kristianpoller, N. Photovoltaic effects in the Oriental hornet, Vespa orientalis. J. Insect Physiol. 38, 37–48 (1992).

    Article  Google Scholar 

  30. Plotkin, M. et al. Solar energy harvesting in the epicuticle of the oriental hornet (Vespa orientalis). Sci. Nat. 97, 1067–1076 (2010).

    Article  Google Scholar 

  31. Catania, K. The shocking predatory strike of the electric eel. Science 346, 1231–1234 (2014).

    Article  Google Scholar 

  32. Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

    Article  Google Scholar 

  33. Shamos, M. H. & Lavine, L. S. Piezoelectricity as a fundamental property of biological tissues. Nature 213, 267–269 (1967).

    Article  Google Scholar 

  34. Kao, F.-C., Chiu, P.-Y., Tsai, T.-T. & Lin, Z.-H. The application of nanogenerators and piezoelectricity in osteogenesis. Sci. Technol. Adv. Mater. 20, 1103–1117 (2019).

    Article  Google Scholar 

  35. Pfeffer, C. et al. Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218–221 (2012).

    Article  Google Scholar 

  36. Bjerg, J. T. et al. Long-distance electron transport in individual, living cable bacteria. Proc. Natl Acad. Sci. USA 115, 5786–5791 (2018).

    Article  Google Scholar 

  37. Grinter, R. et al. Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature 615, 541–547 (2023).

    Article  Google Scholar 

  38. Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017).

    Article  Google Scholar 

  39. Li, J., Li, J., Sun, J., Feng, S. & Wang, Z. Biological and engineered topological droplet rectifiers. Adv. Mater. 31, 1806501 (2019).

    Article  Google Scholar 

  40. Ahamed, M. K., Wang, H. & Hazell, P. J. From biology to biomimicry: using nature to build better structures—a review. Constr. Build. Mater. 320, 126195 (2022).

    Article  Google Scholar 

  41. Xu, W. et al. Triboelectric wetting for continuous droplet transport. Sci. Adv. 8, eade2085 (2022).

    Article  Google Scholar 

  42. Ren, J. et al. Bioinspired energy storage and harvesting devices. Adv. Mater. Technol. 6, 2001301 (2021).

    Article  Google Scholar 

  43. Katiyar, N. K., Goel, G., Hawi, S. & Goel, S. Nature-inspired materials: emerging trends and prospects. NPG Asia Mater. 13, 56 (2021).

    Article  Google Scholar 

  44. Mei, Y. & Tang, C. Y. Recent developments and future perspectives of reverse electrodialysis technology: a review. Desalination 425, 156–174 (2018).

    Article  Google Scholar 

  45. Jiang, D. et al. Water–solid triboelectric nanogenerators: an alternative means for harvesting hydropower. Renew. Sustain. Energy Rev. 115, 109366 (2019).

    Article  Google Scholar 

  46. Wang, X. et al. Hydrovoltaic technology: from mechanism to applications. Chem. Soc. Rev. 51, 4902–4927 (2022).

    Article  Google Scholar 

  47. Xu, W. & Wang, Z. Fusion of slippery interfaces and transistor-inspired architecture for water kinetic energy harvesting. Joule 4, 2527–2531 (2020).

    Article  Google Scholar 

  48. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  Google Scholar 

  49. Turek, M. & Bandura, B. Renewable energy by reverse electrodialysis. Desalination 205, 67–74 (2007).

    Article  Google Scholar 

  50. Veerman, J., Saakes, M., Metz, S. & Harmsen, G. Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water. J. Membr. Sci. 327, 136–144 (2009).

    Article  Google Scholar 

  51. Kim, D.-K., Duan, C., Chen, Y.-F. & Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 9, 1215–1224 (2010).

    Article  Google Scholar 

  52. Zhang, Z., Wen, L. & Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6, 622–639 (2021).

    Article  Google Scholar 

  53. Długołęcki, P. et al. On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. J. Membr. Sci. 349, 369–379 (2010).

    Article  Google Scholar 

  54. Vermaas, D. A., Kunteng, D., Saakes, M. & Nijmeijer, K. Fouling in reverse electrodialysis under natural conditions. Water Res. 47, 1289–1298 (2013).

    Article  Google Scholar 

  55. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  Google Scholar 

  56. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    Article  Google Scholar 

  57. Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014).

    Article  Google Scholar 

  58. Daiguji, H. Ion transport in nanofluidic channels. Chem. Soc. Rev. 39, 901–911 (2010).

    Article  Google Scholar 

  59. Guo, W., Tian, Y. & Jiang, L. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Acc. Chem. Res. 46, 2834–2846 (2013).

    Article  Google Scholar 

  60. Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    Article  Google Scholar 

  61. Macha, M., Marion, S., Nandigana, V. V. R. & Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4, 588–605 (2019).

    Article  Google Scholar 

  62. Chen, X. et al. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 6, 7346 (2015).

    Article  Google Scholar 

  63. Yang, J., Lu, F., Kostiuk, L. W. & Kwok, D. Y. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J. Micromech. Microeng. 13, 963 (2003).

    Article  Google Scholar 

  64. Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317–321 (2017).

    Article  Google Scholar 

  65. Yang, P. et al. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10, 1923–1927 (2017).

    Article  Google Scholar 

  66. Ding, T. P. et al. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27, 1700551 (2017).

    Article  Google Scholar 

  67. Hong, S. et al. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interfaces 10, 28517–28524 (2018).

    Article  Google Scholar 

  68. Wong, S. C. et al. Humidity gradients in the air spaces of leaves. Nat. Plants 8, 971–978 (2022).

    Article  Google Scholar 

  69. Li, J. et al. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 58, 797–802 (2019).

    Article  Google Scholar 

  70. Zhou, X. et al. Harvesting electricity from water evaporation through microchannels of natural wood. ACS Appl. Mater. Interfaces 12, 11232–11239 (2020).

    Article  Google Scholar 

  71. Liu, X. et al. Microbial biofilms for electricity generation from water evaporation and power to wearables. Nat. Commun. 13, 1–8 (2022).

    Google Scholar 

  72. Ye, M., Cheng, H., Gao, J., Li, C. & Qu, L. A respiration-detective graphene oxide/lithium battery. J. Mater. Chem. A 4, 19154–19159 (2016).

    Article  Google Scholar 

  73. Zhao, F., Cheng, H., Zhang, Z., Jiang, L. & Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015).

    Article  Google Scholar 

  74. Sun, Z. et al. Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts. Mater. Horiz. 8, 2303–2309 (2021).

    Article  Google Scholar 

  75. Wang, H. et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 16, 811–819 (2021).

    Article  Google Scholar 

  76. Lu, W. et al. Anion–cation heterostructured hydrogels for all-weather responsive electricity and water harvesting from atmospheric air. Nano Energy 104, 107892 (2022).

    Article  Google Scholar 

  77. Tan, J. et al. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 13, 3643 (2022).

    Article  Google Scholar 

  78. Wang, H. et al. Moisture adsorption–desorption full cycle power generation. Nat. Commun. 13, 2524 (2022).

    Article  Google Scholar 

  79. Liu, X. et al. Power generation from ambient humidity using protein nanowires. Nature 578, 550–554 (2020).

    Article  Google Scholar 

  80. Li, M. et al. Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29, 1901798 (2019).

    Article  Google Scholar 

  81. Lin, S., Wang, Z., Chen, X., Ren, J. & Ling, S. Ultrastrong and highly sensitive fiber microactuators constructed by force‐reeled silks. Adv. Sci. 7, 1902743 (2020).

    Article  Google Scholar 

  82. Yang, L., Zhang, L. & Sun, D. Energy harvesting technology based on moisture-responsive actuators. J. Mater. Chem. A 11, 18530–18560 (2023).

    Article  Google Scholar 

  83. Lin, Z. H., Cheng, G., Lee, S., Pradel, K. C. & Wang, Z. L. Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process. Adv. Mater. 26, 4690–4696 (2014).

    Article  Google Scholar 

  84. Moon, J. K., Jeong, J., Lee, D. & Pak, H. K. Electrical power generation by mechanically modulating electrical double layers. Nat. Commun. 4, 1487 (2013).

    Article  Google Scholar 

  85. Yin, J. et al. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 9, 378–383 (2014).

    Article  Google Scholar 

  86. Zheng, H. et al. Remote‐controlled droplet chains‐based electricity generators. Adv. Energy Mater. 13, 2203825 (2023).

    Article  Google Scholar 

  87. Xu, X. et al. Droplet energy harvesting panel. Energy Environ. Sci. 15, 2916–2926 (2022).

    Article  Google Scholar 

  88. Li, Y. et al. A fully self‐powered cholesteric smart window actuated by droplet‐based electricity generator. Adv. Opt. Mater. 10, 2102274 (2022).

    Article  Google Scholar 

  89. Li, L. et al. Sparking potential over 1200 V by a falling water droplet. Sci. Adv. 9, eadi2993 (2023).

    Article  Google Scholar 

  90. Li, Y. et al. A droplet-based electricity generator incorporating Kelvin water dropper with ultrahigh instantaneous power density. Droplet 3, e91 (2024).

    Article  Google Scholar 

  91. Wang, L. et al. Harvesting energy from high‐frequency impinging water droplets by a droplet‐based electricity generator. EcoMat 3, e12116 (2021).

    Article  Google Scholar 

  92. Ma, Z., Ai, J., Shi, Y., Wang, K. & Su, B. A superhydrophobic droplet‐based magnetoelectric hybrid system to generate electricity and collect water simultaneously. Adv. Mater. 32, 2006839 (2020).

    Article  Google Scholar 

  93. Chen, Y. et al. Interfacial laser‐induced graphene enabling high‐performance liquid−solid triboelectric nanogenerator. Adv. Mater. 33, 2104290 (2021).

    Article  Google Scholar 

  94. Wu, H. et al. Fully biodegradable water droplet energy harvester based on leaves of living plants. ACS Appl. Mater. Interfaces 12, 56060–56067 (2020).

    Article  Google Scholar 

  95. Armiento, S., Filippeschi, C., Meder, F. & Mazzolai, B. Liquid–solid contact electrification when water droplets hit living plant leaves. Commun. Mater. 3, 79 (2022).

    Article  Google Scholar 

  96. Xu, W. et al. SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl Sci. Rev. 6, 540–550 (2019).

    Article  Google Scholar 

  97. Song, Y. et al. Achieving ultra-stable and superior electricity generation by integrating transistor-like design with lubricant armor. Innovation 3, 100301 (2022).

    Google Scholar 

  98. Lafuma, A. & Quéré, D. Slippery pre-suffused surfaces. Europhys. Lett. 96, 56001 (2011).

    Article  Google Scholar 

  99. Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  Google Scholar 

  100. Yan, X. et al. Bubble energy generator. Sci. Adv. 8, eabo7698 (2022).

    Article  Google Scholar 

  101. Li, C., Liu, X., Yang, D. & Liu, Z. Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring. Nano Energy 95, 106998 (2022).

    Article  Google Scholar 

  102. Ballif, C., Haug, F.-J., Boccard, M., Verlinden, P. J. & Hahn, G. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 7, 597–616 (2022).

    Article  Google Scholar 

  103. Li, H. & Zhang, W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020).

    Article  Google Scholar 

  104. Zhou, Y., Herz, L. M., Jen, A. K. Y. & Saliba, M. Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7, 794–807 (2022).

    Article  Google Scholar 

  105. Yoon, J. et al. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chem. Soc. Rev. 50, 12915–12984 (2021).

    Article  Google Scholar 

  106. Sun, J. et al. Biomimetic moth-eye nanofabrication: enhanced antireflection with superior self-cleaning characteristic. Sci. Rep. 8, 5438 (2018).

    Article  Google Scholar 

  107. Siddique, R. H. et al. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers. Sci. Adv. 3, e1700232 (2017).

    Article  Google Scholar 

  108. Choi, J. S., Jang, Y.-W., Kim, U., Choi, M. & Kang, S. M. Optically and mechanically engineered anti-reflective film for highly efficient rigid and flexible perovskite solar cells. Adv. Energy Mater. 12, 2201520 (2022).

    Article  Google Scholar 

  109. Lou, S., Guo, X., Fan, T. & Zhang, D. Butterflies: inspiration for solar cells and sunlight water-splitting catalysts. Energy Environ. Sci. 5, 9195–9216 (2012).

    Article  Google Scholar 

  110. Schmager, R. et al. Texture of the viola flower for light harvesting in photovoltaics. ACS Photonics 4, 2687–2692 (2017).

    Article  Google Scholar 

  111. Zhu, J., Hsu, C.-M., Yu, Z., Fan, S. & Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010).

    Article  Google Scholar 

  112. Kang, S. M., Ahn, N., Lee, J.-W., Choi, M. & Park, N.-G. Water-repellent perovskite solar cell. J. Mater. Chem. A 2, 20017–20021 (2014).

    Article  Google Scholar 

  113. Zhang, H. et al. Design of superhydrophobic surfaces for stable perovskite solar cells with reducing lead leakage. Adv. Energy Mater. 11, 2102281 (2021).

    Article  Google Scholar 

  114. Meng, X. et al. A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage. Adv. Funct. Mater. 31, 2106460 (2021).

    Article  Google Scholar 

  115. Zorba, V. et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv. Mater. 20, 4049–4054 (2008).

    Article  Google Scholar 

  116. Ye, C. et al. An integrated solar panel with a triboelectric nanogenerator array for synergistic harvesting of raindrop and solar energy. Adv. Mater. 35, 2209713 (2023).

    Article  Google Scholar 

  117. Liu, Y. et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12, 2893–2899 (2018).

    Article  Google Scholar 

  118. Liao, M. et al. An integrated electricity generator harnessing water and solar energy featuring common-electrode configuration. Nano Energy 116, 108831 (2023).

    Article  Google Scholar 

  119. Wang, X. et al. Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 12, 52 (2021).

    Article  Google Scholar 

  120. Heo, D., Jang, W. & Kim, S. Recent review of interfacial engineering for perovskite solar cells: effect of functional groups on the stability and efficiency. Mater. Today Chem. 26, 101224 (2022).

    Article  Google Scholar 

  121. Liu, Y. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019).

    Article  Google Scholar 

  122. Qian, X. et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 14, 1048–1055 (2019).

    Article  Google Scholar 

  123. Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).

    Article  Google Scholar 

  124. Yu, B. et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370, 342–346 (2020).

    Article  Google Scholar 

  125. Lheritier, P. et al. Large harvested energy with non-linear pyroelectric modules. Nature 609, 718–721 (2022).

    Article  Google Scholar 

  126. González-Roubaud, E., Pérez-Osorio, D. & Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: steam vs. molten salts. Renew. Sust. Energ. Rev. 80, 133–148 (2017).

    Article  Google Scholar 

  127. Kucharski, T. J. et al. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. Nat. Chem. 6, 441–447 (2014).

    Article  Google Scholar 

  128. Liu, Z. et al. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 13, 1120 (2022).

    Article  Google Scholar 

  129. Liu, Y. et al. Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications. Energy Environ. Sci. 15, 3670–3687 (2022).

    Article  Google Scholar 

  130. Wang, X. et al. Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun. 10, 4151 (2019).

    Article  Google Scholar 

  131. Shi, X.-L., Zou, J. & Chen, Z.-G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020).

    Article  Google Scholar 

  132. Uchida, K. et al. Observation of the spin seebeck effect. Nature 455, 778–781 (2008).

    Article  Google Scholar 

  133. Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K. & van Wees, B. J. Direct observation of the spin-dependent Peltier effect. Nat. Nanotechnol. 7, 166–168 (2012).

    Article  Google Scholar 

  134. Kraemer, D. et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy 1, 1–8 (2016).

    Article  Google Scholar 

  135. Hu, G., Edwards, H. & Lee, M. Silicon integrated circuit thermoelectric generators with a high specific power generation capacity. Nat. Electron. 2, 300–306 (2019).

    Article  Google Scholar 

  136. Zhou, Y. et al. Giant polarization ripple in transverse pyroelectricity. Nat. Commun. 14, 426 (2023).

    Article  Google Scholar 

  137. Yang, M.-M. et al. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature 584, 377–381 (2020).

    Article  Google Scholar 

  138. Duan, J. et al. Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 5, 768–779 (2021).

    Article  Google Scholar 

  139. Kim, H. et al. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12, 4658 (2021).

    Article  Google Scholar 

  140. Wang, Y. et al. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Science 381, 291–296 (2023).

    Article  Google Scholar 

  141. Chen, C. et al. Structural design of nanowire wearable stretchable thermoelectric generator. Nano Lett. 22, 4131–4136 (2022).

    Article  Google Scholar 

  142. Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011).

    Article  Google Scholar 

  143. Han, C.-G. et al. Giant thermopower of ionic gelatin near room temperature. Science 368, 1091–1098 (2020).

    Article  Google Scholar 

  144. Sun, T., Wang, L. & Jiang, W. Pushing thermoelectric generators toward energy harvesting from the human body: challenges and strategies. Mater. Today 57, 121–145 (2022).

    Article  Google Scholar 

  145. Li, L. et al. Enhancing hydrovoltaic power generation through heat conduction effects. Nat. Commun. 13, 1043 (2022).

    Article  Google Scholar 

  146. Leung, E. M. et al. A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10, 1947 (2019).

    Article  Google Scholar 

  147. Li, T. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608–613 (2019).

    Article  Google Scholar 

  148. Shi, N. N. et al. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015).

    Article  Google Scholar 

  149. Li, T. et al. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K. Nat. Energy 3, 148–156 (2018).

    Article  Google Scholar 

  150. Ren, W. et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 7, eabe0586 (2021).

    Article  Google Scholar 

  151. Lee, B. et al. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 11, 5948 (2020).

    Article  Google Scholar 

  152. Zhan, H.-J. et al. Biomimetic carbon tube aerogel enables super-elasticity and thermal insulation. Chem 5, 1871–1882 (2019).

    Article  Google Scholar 

  153. Zhang, Q., Deng, K., Wilkens, L., Reith, H. & Nielsch, K. Micro-thermoelectric devices. Nat. Electron. 5, 333–347 (2022).

    Article  Google Scholar 

  154. Hao, S., Fu, Q., Meng, L., Xu, F. & Yang, J. A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics. Nat. Commun. 13, 6472 (2022).

    Article  Google Scholar 

  155. Sun, T. et al. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 11, 572 (2020).

    Article  Google Scholar 

  156. Wu, M. et al. Biomimetic, knittable aerogel fiber for thermal insulation textile. Science 382, 1379–1383 (2023).

    Article  Google Scholar 

  157. Jiang, D. et al. A triboelectric and pyroelectric hybrid energy harvester for recovering energy from low-grade waste fluids. Nano Energy 70, 104459 (2020).

    Article  Google Scholar 

  158. Wu, Y. et al. Triboelectric–thermoelectric hybrid nanogenerator for harvesting energy from ambient environments. Adv. Mater. Technol. 3, 1800166 (2018).

    Article  Google Scholar 

  159. Zhou, Y. et al. Non-planar dielectrics derived thermal and electrostatic field inhomogeneity for boosted weather-adaptive energy harvesting. Natl. Sci. Rev. 10, nwad186 (2023).

    Article  Google Scholar 

  160. Park, T. et al. Photothermally activated pyroelectric polymer films for harvesting of solar heat with a hybrid energy cell structure. ACS Nano 9, 11830–11839 (2015).

    Article  Google Scholar 

  161. Sripadmanabhan Indira, S. et al. A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system. Sol. Energy 201, 122–148 (2020).

    Article  Google Scholar 

  162. Han, W. B. et al. Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci. Adv. 9, eadf5883 (2023).

    Article  Google Scholar 

  163. Ao, X. et al. Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space. Proc. Natl Acad. Sci. USA 119, e2120557119 (2022).

    Article  Google Scholar 

  164. Zhang, S., Wu, Z., Liu, Z. & Hu, Z. An emerging energy technology: self-uninterrupted electricity power harvesting from the sun and cold space. Adv. Energy Mater. 13, 2300260 (2023).

    Article  Google Scholar 

  165. Ren, H., Xiao, T., Zhang, Q. & Liu, Z. Photosynthesis-inspired bifunctional energy-harvesting devices that convert light and salinity gradients into electricity. Chem. Commun. 54, 12310–12313 (2018).

    Article  Google Scholar 

  166. Wang, Q. et al. Efficient solar-osmotic power generation from bioinspired anti-fouling 2D WS2 composite membranes. Angew. Chem. Int. Ed. Engl. 62, e202302938 (2023).

    Article  Google Scholar 

  167. Wang, Z. L. & Wang, A. C. On the origin of contact-electrification. Mater. Today 30, 34–51 (2019).

    Article  Google Scholar 

  168. Yao, Z. et al. Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2023).

    Article  Google Scholar 

  169. Portilla, L. et al. Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6, 10–17 (2023).

    Google Scholar 

  170. Lee, G.-H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (T2293694, 51975502), Research Grants Council of Hong Kong (C1006-20W, 11213320, 11219219), Shenzhen Key Project (JCYJ20200109143206663) and Tencent Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Zuankai Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Xu, W., Peng, L. et al. Nature-inspired interfacial engineering for energy harvesting. Nat Rev Electr Eng 1, 218–233 (2024). https://doi.org/10.1038/s44287-024-00029-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00029-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing