Tree on the background with molecules at the front and some bubbles with plastic bottles

Read our April issue

Nature Catalysis covers all areas of catalysis, incorporating the work of scientists, engineers and industry. April issue now live.

Announcements

  • Stay up to date with the latest in catalysis news and research. Register for the e-alert to get content delivered directly to your inbox.

  • historical laboratory equipment

    This series brings together our thematic retro News & Views offerings. These short articles reflect on historical developments in the fields of catalysis and their impact on contemporary research.

  • CO<sub>2</sub> Reimagined

    In acknowledgement of the five-year anniversary of the Paris Agreement, this Focus is dedicated to progressing the fundamental science and practical implementation of this technology to advance climate goals.

Advertisement

  • Photoredox-catalysed coupling of electron-rich aryl electrophiles based on simple nickel salts usually suffers from a slow oxidative addition. Now, it is shown that thianthrenation leads to more favourable redox properties of the substrates, alleviating this problem in carbon–heteroatom bond-forming reactions.

    • Shengyang Ni
    • Riya Halder
    • Tobias Ritter
    ArticleOpen Access
  • Direct stereoselective amination of tertiary C–H bonds without the assistance of directing groups is a challenging task in synthetic organic chemistry. Now a nitrene transferase is engineered to aminate tertiary C–H bonds with high enantioselectivity, providing direct access to valuable chiral α-tertiary primary amines.

    • Runze Mao
    • Shilong Gao
    • Frances H. Arnold
    Article
  • Asymmetric versions of radical-mediated alkene difunctionalizations featuring hydrocarbon precursors are currently elusive. Here the authors report an asymmetric vicinal alkene dicarbofunctionalization based on the activation of C(sp3)–H bonds through the combination of photocatalysed hydrogen atom transfer and nickel catalysis.

    • Xia Hu
    • Iván Cheng-Sánchez
    • Cristina Nevado
    ArticleOpen Access
  • Synthetic methylotrophic organisms provide potential for valorization of greenhouse gas-derived methanol. Here an Escherichia coli strain is generated that reaches a similar growth rate on methanol to many natural methylotrophs and is capable of producing chemicals from this carbon source.

    • Michael A. Reiter
    • Timothy Bradley
    • Julia A. Vorholt
    ArticleOpen Access
  • The tunable design of molecular catalysts presents opportunities for the control of product selectivity in CO2 reduction, yet to date, complexes capable of producing multicarbon products have been elusive. Here, a Br-bridged dinuclear Cu(I) complex that turns over C3H7OH is reported.

    • Naonari Sakamoto
    • Keita Sekizawa
    • Takeshi Morikawa
    ArticleOpen Access
    • Atropisomerism is an expanding target of asymmetric catalysis. In this Review, recent advances in atroposelective synthesis under catalytic control are highlighted with a focus on general strategies that provide high versatility and modularity.

      • Shao-Hua Xiang
      • Wei-Yi Ding
      • Bin Tan
      Review Article
    • Gut microbes have enzymes that break down the heavily glycosylated mucin protein of host animals, but known enzymes recognize only one glycan chain. Now, bioinformatic exploration has uncovered a family of mucinases that targets dense sugar residues.

      • Shinya Fushinobu
      News & Views
    • Malonyl-CoA is one of the fundamental building blocks for the synthesis of industrially or pharmaceutically important chemicals, but its biosynthesis via the innate acetyl-CoA carboxylation pathway remains slow and inefficient. Now, an artificial non-carboxylative malonyl-CoA biosynthetic pathway has been developed, significantly enhancing malonyl-CoA supply by boosting carbon and energy efficiency while sidestepping the inhibitions by host cell regulations.

      • Dongsoo Yang
      News & Views
    • Ethylene, despite being a cornerstone of the modern petrochemical industry, continues to pose challenges during its production. Now, a dual single-atom catalyst design emerges as a remarkable solution for the efficient semi-hydrogenation of acetylene.

      • Haisong Feng
      • Xin Zhang
      News & Views
    • Material–microbe hybrids represent an interesting class of catalyst with potential for high energy efficiency and product selectivity. In this Perspective the authors discuss some of the difficulties in understanding these interdisciplinary systems and the attempts to unify the approaches taken by different research communities to further the field.

      • Xun Guan
      • Yongchao Xie
      • Chong Liu
      Perspective

Nature Careers

Science jobs

Advertisement