Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two types of orientation-sensitive responses of amacrine cells in the mammalian retina

Abstract

NEURONS sensitive to the orientation of light stimuli exist throughout the mammalian visual system1–3, suggesting that this spatial feature is a fundamental cue used by the brain to decipher visual information. The most peripheral neurons known to show orientation sensitivity are the retinal ganglion cells. Considerable morphological4,5 and pharmacological6–10 data suggest that the orientation sensitivity of ganglion cells is formed, at least partly, by the amacrine cells, which are laterally oriented interneurons presynaptic to the ganglion cells in the inner plexiform layer. So far there have been few studies of the responses of amacrine cells to oriented visual stimuli and their role in forming orientation-sensitive responses in the retina remains unclear. Here I report the novel finding of a population of amacrine cells in the rabbit retina which are orientation-sensitive. These amacrine cells can be divided into two subtypes, whose orientation sensitivity is manufactured by two distinct mechanisms. The orientation sensitivity of the first subtype of amacrine cell is formed from the interactions of excitatory, centre-receptive field synaptic inputs and inhibitory inputs of opposite polarity, whereas that for cells of the second subtype seems to be the product of a marked asymmetry in their dendritic arbors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Vidyasagar, T. R. & Urbas, J. V. Expl Brain Res. 46, 157–169 (1982).

    Article  CAS  Google Scholar 

  3. Levick, W. R. J. Physiol., Lond. 188, 285–307 (1967).

    Article  CAS  Google Scholar 

  4. Dowling, J. E. Proc. R. Soc. B 170, 205–228 (1968).

    ADS  CAS  Google Scholar 

  5. Dubin, M. W. J. comp. Neurol. 140, 479–506 (1970).

    Article  CAS  Google Scholar 

  6. Ames, III, A. & Pollen, D. A. J. Neurophysiol 32, 424–442 (1969).

    Article  Google Scholar 

  7. Wyatt, H. J. & Daw, N. W. Science 191, 204–205 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Caldwell, J. H., Daw, N. W. & Wyatt, H. J. J. Physiol., Lond. 276, 277–298 (1978).

    Article  CAS  Google Scholar 

  9. Ariel, M. & Daw, N. W. J. Physiol., Lond. 324, 135–160 (1982).

    Article  CAS  Google Scholar 

  10. Ariel, M. & Daw, N. W. J. Physiol., Lond. 324, 161–185 (1982).

    Article  CAS  Google Scholar 

  11. Heggelund, P. Expl Brain Res. 42, 89–98 (1981).

    CAS  Google Scholar 

  12. Ferster, D. & Koch, C. Trends Neurosci. 10, 487–492 (1987).

    Article  Google Scholar 

  13. Famiglietti, E. V. & Kolb, H. Science 194, 193–195 (1976).

    Article  ADS  Google Scholar 

  14. Bloomfield, S. A. & Miller, R. F. J. Neurosci. 6, 1–13 (1986).

    Article  CAS  Google Scholar 

  15. Hughes, A. in Progress in Retinal Research Vol. 4 (eds Osborne, N. & Chader, G.) 243–313 (Pergamon Press, Oxford, 1985).

    Google Scholar 

  16. Mariani, A. P. Nature 298, 654–655 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Levick, W. R. & Thibos, L. N. J. Physiol., Lond. 329, 243–261 (1982).

    Article  CAS  Google Scholar 

  18. Leventhal, A. G. & Schall, J. D. J. comp. Neurol. 220, 465–475 (1983).

    Article  CAS  Google Scholar 

  19. Elias, S. A. & Stevens, J. K. Brain Res. 196, 365–372 (1980).

    Article  Google Scholar 

  20. Miller, R. F. & Bloomfield, S. A. Proc. natn. Acad. Sci. U.S.A. 80, 3069–3073 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Miller, R. F. in The Neurosciences Fourth Study Program (eds Schmitt, F. O. & Worden, F. G.) 227–245 (MIT Press, Cambridge, 1979).

    Google Scholar 

  22. Caldwell, J. H. & Daw, N. W. J. Physiol., Lond. 276, 257–276 (1978).

    Article  CAS  Google Scholar 

  23. Bloomfield, S. A. & Miller, R. F. J. comp. Neurol. 208, 288–303 (1982).

    Article  CAS  Google Scholar 

  24. Famglietti, E. V. in Neurobiology of the Inner Retina (eds Weiler, R. & Osborne, N. N.) 169–180 (Springer-Verlag, Berlin, 1989).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloomfield, S. Two types of orientation-sensitive responses of amacrine cells in the mammalian retina. Nature 350, 347–350 (1991). https://doi.org/10.1038/350347a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350347a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing