Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Archaean cratonic roots, mantle shear zones and deep electrical anisotropy

Abstract

THE extent to which the mantle participated in the growth and stabilization of ancient cratons is central to our understanding of the evolution of the continents1. The detection of seismic anisotropy beneath Precambrian North America, for example, has been interpreted as showing that strain-induced orientation of mantle minerals in subcontinental lithospheric mantle can preserve a record of ancient episodes of deformation2. Here we present mag-netotelluric measurements from the Superior Province of the Canadian shield, which reveal pronounced electrical anisotropy in the upper 100 km of the underlying mantle. We argue that this anisotropy is best explained by conducting graphite films, oriented within fractures or on grain boundaries, and associated with metasomatism of the mantle roots of major Archaean shear zones which transect the entire Superior Province. The uppermost mantle beneath the Canadian shield has therefore remained fixed to the crust and isolated from significant tectonic reworking since the late Archaean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoffman, P. F. Phil. Trans. R. Soc. A331, 523–532 (1990).

    Article  ADS  Google Scholar 

  2. Silver, P. G. & Kaneshima, S. Geophys. Res. Lett. 20, 1127–1130 (1993).

    Article  ADS  Google Scholar 

  3. Bailey, R. C., Craven, J. A., Macnae, J. C. & Polzer, B. D. Nature 340, 136–138 (1989).

    Article  ADS  Google Scholar 

  4. Groom, R. W. & Bailey, R. C. J. geophys. Res. 94, 1913–1925 (1989).

    Article  ADS  Google Scholar 

  5. Bahr, K. Phys. Earth planet. Inter. 66, 24–38 (1991).

    Article  ADS  Google Scholar 

  6. Jones, A. G. in Continental Lower Crust (eds Fountain, D., Arculus, R. & Kay, R.) 81–143 (Elsevier, Amsterdam, 1992).

    Google Scholar 

  7. Kellett, R. L., Mareschal, M. & Kurtz, R. D. Geophys. J. Int. 111, 141–150 (1992).

    Article  ADS  Google Scholar 

  8. Kurtz, R. D., Craven, J. A., Niblett, E. R. & Stevens, R. A. Geophys. J. Int. 113, 483–498 (1993).

    Article  ADS  Google Scholar 

  9. Zhang, P., Pedersen, L. B., Mareschal, M. & Chouteau, M. Geophys. J. Int. 113, 693–700 (1993).

    Article  ADS  Google Scholar 

  10. Chave, A. D. & Smith, J. T. J. geophys. Res. 99, 4669–4682 (1994).

    Article  ADS  Google Scholar 

  11. Clowes, R. M. et al. Can. J. Earth Sci. 29, 1813–1864 (1992).

    Article  ADS  Google Scholar 

  12. Schultz, A., Kurtz, R. D., Chave, A. D. & Jones, A. G. Geophys. Res. Lett. 20, 2941–2944 (1993).

    Article  ADS  Google Scholar 

  13. Shankland, T. & Duba, A. Geophys. J. Int. 103, 25–31 (1990).

    Article  ADS  Google Scholar 

  14. Jordan, T. H. Rev. Geophys. Space Phys. 13, 1–12 (1975).

    Article  ADS  Google Scholar 

  15. Zoback, M. L. J. geophys. Res. 97, 11761–11782 (1992).

    Article  ADS  Google Scholar 

  16. West, G. F. & Ernst, R. E. Can. J. Earth Sci. 28, 1797–1811 (1991).

    Article  ADS  Google Scholar 

  17. Forsyth, D. A. Can. J. Earth Sci. 18, 103–119 (1981).

    Article  ADS  Google Scholar 

  18. Percival, J. in Archean Crustal Evolution (ed. Condie, K. C.) 357–410 (Elsevier, Amsterdam, 1994).

    Book  Google Scholar 

  19. Nisbett, E. G., Cheadle, M. J., Arndt, N. T. & Bickle, M. T. Lithos 30, 291–307 (1993).

    Article  ADS  Google Scholar 

  20. Meissner, R. & Strehlau, Tectonics 1, 73–89 (1982).

    Article  ADS  Google Scholar 

  21. Bailey, R. C. Geophys. Res. Lett. 17, 1129–1132 (1990).

    Article  ADS  Google Scholar 

  22. Skippen, G. B. & Marshall, D. D. Can. Mineralogist 29, 693–705 (1991).

    CAS  Google Scholar 

  23. Mareschal, M., Fyfe, W. S., Percival, J. & Chan, T. Nature 357, 674–676 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Jackson, S. & Fyon, T. Geology of Ontario (OGS Vol. 4, Part 1) (Ontario Geological Survey, Sudbury, 1991).

    Google Scholar 

  25. Leclair, A., Ernst, R. E. & Hattori, K. Geology 21, 399–402 (1993).

    Article  ADS  Google Scholar 

  26. Feng, R., Kerrich, R., McBride, S. & Farrar, E. Can. J. Earth Sci. 29, 1389–1411 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Green, A. G. et al. Nature 344, 327–330 (1990).

    Article  ADS  Google Scholar 

  28. Jin, Y., McNutt, M. & Zhu, Y. Nature 371, 669–674 (1994).

    Article  ADS  Google Scholar 

  29. Calvert, A. J., Sawyer, E., Davis, W. & Ludden, J. Nature (submitted).

  30. Nicolas, A. Phys. Earth planet. Inter. 78, 337–342 (1993).

    Article  ADS  Google Scholar 

  31. Lacroix, S. & Sawyer, E. Can. J. Earth Sci. (in the press).

  32. Kellett, R. L., Barnes, A. E. & Rive, M. Can. J. Earth Sci. 31, 282–292 (1994).

    Article  ADS  Google Scholar 

  33. Indares, A. & Martignole, J. Can. J. Earth Sci. 27, 371–386 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mareschal, M., Kellett, R., Kurtz, R. et al. Archaean cratonic roots, mantle shear zones and deep electrical anisotropy. Nature 375, 134–137 (1995). https://doi.org/10.1038/375134a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375134a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing