Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The harlequin mouse mutation downregulates apoptosis-inducing factor

Abstract

Harlequin (Hq) mutant mice have progressive degeneration of terminally differentiated cerebellar and retinal neurons. We have identified the Hq mutation as a proviral insertion in the apoptosis-inducing factor (Aif) gene, causing about an 80% reduction in AIF expression. Mutant cerebellar granule cells are susceptible to exogenous and endogenous peroxide-mediated apoptosis, but can be rescued by AIF expression. Overexpression of AIF in wild-type granule cells further decreases peroxide-mediated cell death, suggesting that AIF serves as a free radical scavenger. In agreement, dying neurons in aged Hq mutant mice show oxidative stress. In addition, neurons damaged by oxidative stress in both the cerebellum and retina of Hq mutant mice re-enter the cell cycle before undergoing apoptosis. Our results provide a genetic model of oxidative stress-mediated neurodegeneration and demonstrate a direct connection between cell cycle re-entry and oxidative stress in the ageing central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progressive ataxia in Hq mutant mice is correlated with the loss of cerebellar granule and Purkinje cells.
Figure 2: Progressive retinal degeneration in Hq mutant mice.
Figure 3: The Hq mutation is an ecotropic proviral insertion in the Aif gene.
Figure 4: Oxidative-stress-associated responses in Hq mutant mice.
Figure 5: AIF- and peroxide/non-peroxide-mediated cell death in primary neuronal cultures.
Figure 6: Oxidatively damaged neurons re-enter the cell cycle in Hq mutant mice.

Similar content being viewed by others

References

  1. Cassarino, D. S. & Bennett, J. P. Jr An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res. Brain Res. Rev. 29, 1–25 (1999)

    Article  CAS  Google Scholar 

  2. Sayre, L. M., Smith, M. A. & Perry, G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 8, 721–738 (2001)

    Article  CAS  Google Scholar 

  3. Busser, J., Geldmacher, D. S. & Herrup, K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J. Neurosci. 18, 2801–2807 (1998)

    Article  CAS  Google Scholar 

  4. McShea, A., Wahl, A. F. & Smith, M. A. Re-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer disease. Med. Hypotheses 52, 525–527 (1999)

    Article  CAS  Google Scholar 

  5. Yang, Y., Geldmacher, D. S. & Herrup, K. DNA replication precedes neuronal cell death in Alzheimer's disease. J. Neurosci. 21, 2661–2668 (2001)

    Article  CAS  Google Scholar 

  6. Nagy, Z., Esiri, M. M. & Smith, A. D. Expression of cell division markers in the hippocampus in Alzheimer's disease and other neurodegenerative conditions. Acta Neuropathol. (Berl.) 93, 294–300 (1997)

    Article  CAS  Google Scholar 

  7. Osuga, H. et al. Cyclin-dependent kinases as a therapeutic target for stroke. Proc. Natl Acad. Sci. USA 97, 10254–10259 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Katchanov, J. et al. Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J. Neurosci. 21, 5045–5053 (2001)

    Article  CAS  Google Scholar 

  9. Herrup, K. & Busser, J. C. The induction of multiple cell cycle events precedes target-related neuronal death. Development 121, 2385–2395 (1995)

    CAS  PubMed  Google Scholar 

  10. Migheli, A. et al. A cell cycle alteration precedes apoptosis of granule cell precursors in the weaver mouse cerebellum. Am. J. Pathol. 155, 365–373 (1999)

    Article  CAS  Google Scholar 

  11. Gill, J. S. & Windebank, A. J. Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle. J. Clin. Invest. 101, 2842–2850 (1998)

    Article  CAS  Google Scholar 

  12. ElShamy, W. M., Fridvall, L. K. & Ernfors, P. Growth arrest failure, G1 restriction point override, and S phase death of sensory precursor cells in the absence of neurotrophin-3. Neuron 21, 1003–1015 (1998)

    Article  CAS  Google Scholar 

  13. Feddersen, R. M., Ehlenfeldt, R., Yunis, W. S., Clark, H. B. & Orr, H. T. Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron 9, 955–966 (1992)

    Article  CAS  Google Scholar 

  14. Hammang, J. P. et al. Oncogene expression in retinal horizontal cells of transgenic mice results in a cascade of neurodegeneration. Neuron 10, 1197–1209 (1993)

    Article  CAS  Google Scholar 

  15. Barber, B. R. Research news. Mouse News Lett. 45, 34–35 (1971)

    Google Scholar 

  16. Bronson, R. T., Lane, P. W., Harris, B. S. & Davisson, M. T. Harlequin (Hq) produces progressive cerebellar atrophy. Mouse Genome 87, 110 (1990)

    Google Scholar 

  17. Williams, J. Chemistry and Biochemistry of Flavoenzymes (ed. Muller, F.)) 121–211 (CRC Press, Boca Raton, 1995)

    Google Scholar 

  18. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Mustacich, D. & Powis, G. Thioredoxin reductase. Biochem. J. 346, 1–8 (2000)

    Article  CAS  Google Scholar 

  20. Miramar, M. D. et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J. Biol. Chem. 276, 16391–16398 (2001)

    Article  CAS  Google Scholar 

  21. Joza, N. et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Heintz, N. & Zoghbi, H. Y. Insights from mouse models into the molecular basis of neurodegeneration. Annu. Rev. Physiol. 62, 779–802 (2000)

    Article  CAS  Google Scholar 

  23. Hawes, N. L. et al. Retinal degeneration 6 (rd6): a new mouse model for human retinitis punctata albescens. Invest. Ophthalmol. Vis. Sci. 41, 3149–3157 (2000)

    CAS  PubMed  Google Scholar 

  24. Coffin, J. M., Stoye, J. P. & Frankel, W. N. Genetics of endogenous murine leukemia viruses. Ann. NY Acad. Sci. 567, 39–49 (1989)

    Article  ADS  CAS  Google Scholar 

  25. Taylor, B. A. & Rowe, L. A mouse linkage testing stock possessing multiple copies of the endogenous ecotropic murine leukemia virus genome. Genomics 5, 221–232 (1989)

    Article  CAS  Google Scholar 

  26. Coffin, J. RNA Tumor Viruses: Molecular Biology of Tumor Viruses (eds Weiss, R.Teich, N.Varmus, H. & Coffin, J.) 261–369 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1984)

    Google Scholar 

  27. Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002)

    Article  CAS  Google Scholar 

  28. Deisseroth, A. & Dounce, A. L. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 50, 319–375 (1970)

    Article  CAS  Google Scholar 

  29. Baillie, T. & Slatter, J. Glutathione: a vehicle for the transport of chemically reactive metabolites in vivo. Acc. Chem. Res. 24, 264–270 (1991)

    Article  CAS  Google Scholar 

  30. Mate, M. J. et al. The crystal structure of the mouse apoptosis-inducing factor AIF. Nature Struct. Biol. 9, 442–446 (2002)

    Article  CAS  Google Scholar 

  31. White, A. R. et al. Survival of cultured neurons from amyloid precursor protein knock-out mice against Alzheimer's amyloid-beta toxicity and oxidative stress. J. Neurosci. 18, 6207–6217 (1998)

    Article  CAS  Google Scholar 

  32. Costa, G. L. et al. Targeting rare populations of murine antigen-specific T lymphocytes by retroviral transduction for potential application in gene therapy for autoimmune disease. J. Immunol. 164, 3581–3590 (2000)

    Article  CAS  Google Scholar 

  33. Shackelford, R. E., Kaufmann, W. K. & Paules, R. S. Oxidative stress and cell cycle checkpoint function. Free Radical Biol. Med. 28, 1387–1404 (2000)

    Article  CAS  Google Scholar 

  34. Kurki, P., Vanderlaan, M., Dolbeare, F., Gray, J. & Tan, E. M. Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp. Cell Res. 166, 209–219 (1986)

    Article  CAS  Google Scholar 

  35. Kimura, H., Ohtomo, T., Yamaguchi, M., Ishii, A. & Sugimoto, K. Mouse MCM proteins: complex formation and transportation to the nucleus. Genes Cells 1, 977–993 (1996)

    Article  CAS  Google Scholar 

  36. Frade, J. M. Unscheduled re-entry into the cell cycle induced by NGF precedes cell death in nascent retinal neurones. J. Cell Sci. 113, 1139–1148 (2000)

    CAS  PubMed  Google Scholar 

  37. Raina, A. K., Zhu, X., Monteiro, M., Takeda, A. & Smith, M. A. Abortive oncogeny and cell cycle-mediated events in Alzheimer disease. Prog. Cell Cycle Res. 4, 235–242 (2000)

    Article  CAS  Google Scholar 

  38. Daugas, E. et al. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett. 476, 118–123 (2000)

    Article  CAS  Google Scholar 

  39. Mundy, W. R. & Freudenrich, T. M. Sensitivity of immature neurons in culture to metal-induced changes in reactive oxygen species and intracellular free calcium. Neurotoxicology 21, 1135–1144 (2000)

    CAS  PubMed  Google Scholar 

  40. Griendling, K. K., Sorescu, D., Lassegue, B. & Ushio-Fukai, M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler. Thromb. Vasc. Biol. 20, 2175–2183 (2000)

    Article  CAS  Google Scholar 

  41. Lavoie, J. N., Rivard, N., L'Allemain, G. & Pouyssegur, J. A temporal and biochemical link between growth factor-activated MAP kinases, cyclin D1 induction and cell cycle entry. Prog. Cell Cycle Res. 2, 49–58 (1996)

    Article  CAS  Google Scholar 

  42. Lee, E. Y. et al. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev. 8, 2008–2021 (1994)

    Article  CAS  Google Scholar 

  43. Ackerman, S. L. et al. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386, 838–842 (1997)

    Article  ADS  CAS  Google Scholar 

  44. Lynn, R. B., Bechtold, L. S. & Miselis, R. R. Ultrastructure of bombesin-like immunoreactive nerve terminals in the nucleus of the solitary tract and the dorsal motor nucleus. J. Auton. Nerv. Syst. 62, 174–182 (1997)

    Article  CAS  Google Scholar 

  45. Sheldon, M. et al. Scrambler and yotari disrupt the disabled gene and produce a reeler- like phenotype in mice. Nature 389, 730–733 (1997)

    Article  ADS  CAS  Google Scholar 

  46. Cambray-Deakin, M. A. Neural Cell Culture: A Practical Approach (ed. Wilkin, J. C. a. G.) 3–13 (IRL Press, Oxford, 1995)

    Google Scholar 

  47. Grignani, F. et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res. 58, 14–19 (1998)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Mathews for providing antioxidant antibodies; R. Smith and L. Dionne for technical assistance; J. Stockwell for statistical assistance; L. Bechtold and P. Finger for electron microscopy work; G. Martin and J. Smith for assistance with the images; and T. Gridley, E. Leiter, B. Knowles and P. Nishina for comments on the manuscript. This work was supported by NIH grants to S.L.A., a NIH training grant to J.A.K. and an institutional NCI cancer core grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Ackerman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, J., Longo-Guess, C., Rossmann, M. et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419, 367–374 (2002). https://doi.org/10.1038/nature01034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01034

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing