Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and mechanism of the uracil transporter UraA

This article has been updated

Abstract

The nucleobase/ascorbate transporter (NAT) proteins, also known as nucleobase/cation symporter 2 (NCS2) proteins, are responsible for the uptake of nucleobases in all kingdoms of life and for the transport of vitamin C in mammals1,2. Despite functional characterization of the NAT family members in bacteria, fungi and mammals, detailed structural information remains unavailable. Here we report the crystal structure of a representative NAT protein, the Escherichia coli uracil/H+ symporter UraA, in complex with uracil at a resolution of 2.8 Å. UraA has a novel structural fold, with 14 transmembrane segments (TMs) divided into two inverted repeats. A pair of antiparallel β-strands is located between TM3 and TM10 and has an important role in structural organization and substrate recognition. The structure is spatially arranged into a core domain and a gate domain. Uracil, located at the interface between the two domains, is coordinated mainly by residues from the core domain. Structural analysis suggests that alternating access of the substrate may be achieved through conformational changes of the gate domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of UraA reveals a novel fold.
Figure 2: Domain organization of UraA.
Figure 3: Uracil coordination by UraA.
Figure 4: Working model for the transport mechanism of UraA.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Theatomic coordinates of UraAhave been deposited in the Protein Data Bank under accession code 3QE7.

Change history

  • 14 April 2011

    In the Fig. 4b legend, Glu245 was corrected to Glu290.

References

  1. Saier, M. H., Jr et al. Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422, 1–56 (1999)

    Article  CAS  Google Scholar 

  2. Gournas, C., Papageorgiou, I. & Diallinas, G. The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role. Mol. Biosyst. 4, 404–416 (2008)

    Article  CAS  Google Scholar 

  3. Tsukaguchi, H. et al. A family of mammalian Na+-dependent l-ascorbic acid transporters. Nature 399, 70–75 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Wang, Y. et al. Human vitamin C (l-ascorbic acid) transporter SVCT1. Biochem. Biophys. Res. Commun. 267, 488–494 (2000)

    Article  CAS  Google Scholar 

  5. Savini, I., Rossi, A., Pierro, C., Avigliano, L. & Catani, M. V. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 34, 347–355 (2008)

    Article  CAS  Google Scholar 

  6. Yamamoto, S. et al. Identification and functional characterization of the first nucleobase transporter in mammals: implication in the species difference in the intestinal absorption mechanism of nucleobases and their analogs between higher primates and other mammals. J. Biol. Chem. 285, 6522–6531 (2010)

    Article  CAS  Google Scholar 

  7. Diallinas, G. & Scazzocchio, C. A gene coding for the uric acid-xanthine permease of Aspergillus nidulans: inactivational cloning, characterization, and sequence of a cis-acting mutation. Genetics 122, 341–350 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Karatza, P. & Frillingos, S. Cloning and functional characterization of two bacterial members of the NAT/NCS2 family in Escherichia coli . Mol. Membr. Biol. 22, 251–261 (2005)

    Article  CAS  Google Scholar 

  9. Andersen, P. S., Frees, D., Fast, R. & Mygind, B. Uracil uptake in Escherichia coli K-12: isolation of uraA mutants and cloning of the gene. J. Bacteriol. 177, 2008–2013 (1995)

    Article  CAS  Google Scholar 

  10. Koukaki, M. et al. The nucleobase-ascorbate transporter (NAT) signature motif in UapA defines the function of the purine translocation pathway. J. Mol. Biol. 350, 499–513 (2005)

    Article  CAS  Google Scholar 

  11. Karatza, P., Panos, P., Georgopoulou, E. & Frillingos, S. Cysteine-scanning analysis of the nucleobase-ascorbate transporter signature motif in YgfO permease of Escherichia coli: Gln-324 and Asn-325 are essential, and Ile-329–Val-339 form an α-helix. J. Biol. Chem. 281, 39881–39890 (2006)

    Article  CAS  Google Scholar 

  12. Georgopoulou, E., Mermelekas, G., Karena, E. & Frillingos, S. Purine substrate recognition by the nucleobase-ascorbate transporter signature motif in the YgfO xanthine permease: Asn-325 binds and Ala-323 senses substrate. J. Biol. Chem. 285, 19422–19433 (2010)

    Article  CAS  Google Scholar 

  13. de Koning, H. & Diallinas, G. Nucleobase transporters. Mol. Membr. Biol. 17, 75–94 (2000)

    Article  CAS  Google Scholar 

  14. Weyand, S. et al. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322, 709–713 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Shimamura, T. et al. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328, 470–473 (2010)

    Article  ADS  CAS  Google Scholar 

  16. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437, 215–223 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Quick, M. et al. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc. Natl Acad. Sci. USA 106, 5563–5568 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010)

    Article  CAS  Google Scholar 

  19. Screpanti, E. & Hunte, C. Discontinuous membrane helices in transport proteins and their correlation with function. J. Struct. Biol. 159, 261–267 (2007)

    Article  CAS  Google Scholar 

  20. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Wang, Y. et al. Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462, 467–472 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321, 810–814 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Ressl, S., Terwisscha van Scheltinga, A. C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458, 47–52 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Fang, Y. et al. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460, 1040–1043 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Gao, X. et al. Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463, 828–832 (2010)

    Article  ADS  CAS  Google Scholar 

  26. Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993)

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  28. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  29. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  30. DeLano, W. L. PyMOL Molecular Viewerhttp://www.pymol.org〉 (2002)

    Google Scholar 

  31. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  32. Cowtan, K. DM: an automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newslett. Protein Crystallogr. 31, 34–38 (1994)

    Google Scholar 

  33. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  34. Scheich, C., Kummel, D., Soumailakakis, D., Heinemann, U. & Bussow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007)

    Article  Google Scholar 

  35. Dang, S. et al. Structure of a fucose transporter in an outward-open conformation. Nature 467, 734–738 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Shimizu at the Spring-8 beamline BL41XU, and J. He and S. Huang at the Shanghai Synchrotron Radiation Facility for on-site assistance. We thank Y. Shi and Y. Yan for critical discussions. This work was supported by funds from the Ministry of Science and Technology (grant numbers 2009CB918802 and 2011CB910501), Tsinghua University 985 Phase II funds and Project 91017011 supported by the National Natural Science Foundation of China. N.Y. acknowledges support from the Yuyuan Foundation and the Li Foundation.

Author information

Authors and Affiliations

Authors

Contributions

F.L., S.L., Y.J., J.J., H.F., G.L. and N.Y. designed all experiments. F.L., S.L., Y.J., J.J., H.F., G.L., D.D., S.D. and X.Z. performed the experiments. All authors analysed the data. F.L., J.W. and N.Y. contributed to manuscript preparation. N.Y. wrote the manuscript.

Corresponding author

Correspondence to Nieng Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-8 with legends and Supplementary Table 1. (PDF 2170 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, F., Li, S., Jiang, Y. et al. Structure and mechanism of the uracil transporter UraA. Nature 472, 243–246 (2011). https://doi.org/10.1038/nature09885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09885

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing