Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Amplification of a Chimeric Bacillus Gene in Chloroplasts Leads to an Extraordinary Level of an Insecticidal Protein in Tobacco

Abstract

The Bacillus thuringiensis (Bt) crystal toxins are safe biological insecticides, but have short persistence and are poorly effective against pests that feed inside plant tissues. Production of effective levels of these proteins in plants has required resynthesis of the genes encoding them.We report that amplification of an unmodified crylA(c) coding sequence in chloroplasts up to 10,000 copies per cell resulted in the accumulation of an unprecedented 3–5% of the soluble protein hi tobacco haves as protoxin. The plants were extremely toxic to larvae of Hetiothis virescens, Helicoverpa zea, and Spodoptera exigua. Since the plastid transgenes are not transmitted by pollen, this report has implications for containment of Bt genes in crop plants. Furthermore, accumulation of insecticidal protein at a high level will facilitate improvement in the management of Bt resistant insect populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hofte, H. and Whiteley, H.R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schnepf, H.E., Wong, H.C. and Whiteley, H.R. 1987. Expression of a cloned Bacillus thuringiensis crystal protein gene in EschericHia coli. J.Bacteriol. 169: 4110–4118.

    Article  CAS  Google Scholar 

  3. Obukowicz, M.G., Perlak, F.J., Kusano-Kretzmer, K., Mayer, E.J. and Watrud, L.S. 1986. Integration of the delta-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5. Gene 45: 327–331.

    Article  CAS  Google Scholar 

  4. Vaeck, M. et al. 1987. Transgenic plants protected from insect attack. Nature 328: 33–37.

    Article  CAS  Google Scholar 

  5. Adang, M.J. et al. 1987. In: Molecular strategies for crop protection, UCLA symposia on molecular and cellular biology,. 345–353.

  6. Fischhoff, D.A. et al. 1987. Insect tolerant tomato plants. Bio/Technology 5: 807–813.

    CAS  Google Scholar 

  7. Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L. and Fischhoff, D.A. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc.Natl. Acad. Sci. USA 88: 3324–3328.

    Article  CAS  Google Scholar 

  8. Murray, E.E., Rocheleau, T., Eberle, M., Stock, C., Sekhar, V. and Adang, M.J. 1991. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol. Biol. 16: 1035–1050.

    Article  CAS  Google Scholar 

  9. Adang, M.J., Brody, M.S., Cardineau, G., Eagan, N., Roush, R.T., Shewmaker, C.K., Jones, A., Oakes, J.V. and McBride, K.E. 1993. The reconstruction and expression of a Bacillus thuringiensis crylllA gene in protoplasts and potato plants. Plant Mol.Biol. 21: 1131–1145.

    Article  CAS  Google Scholar 

  10. Gray, M.W. 1993. Origin and evolution of organelle genomes. Current Opinion in Genetics and Development. 3: 884–890.

    Article  CAS  Google Scholar 

  11. Palmer, J.D. 1990. Contrasting modes and tempos of genome evolution in land plant organelles. Trends in Genetics 6: 115–120.

    Article  CAS  Google Scholar 

  12. Shimada, H. and Sugiura, M. 1991. Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucl.Acids Res. 19: 983–995.

    Article  CAS  Google Scholar 

  13. Bendieh, A.J. 1987. Why do chloroplasts and mitochondria contain so many copies of their genome?. BioEssays 6: 279–282.

    Article  Google Scholar 

  14. Staub, J.M. and Maliga, P. 1993. Accumulation of Dl porypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J. 12: 601–606.

    Article  CAS  Google Scholar 

  15. McBridge, K.E., Schaaf, D.J., Daley, M. and Stalker, D. 1994. Controlled expression of plastid transgenes in plants based on a nuclear DNA-encoded and plastid-targeted T7 RNA polymerase. Proc. Natl. Acad.Sci. USA 91: 7301–7305.

    Article  Google Scholar 

  16. Carrer, H., Hockenberry, T.N., Svab, Z. and Maliga, P. 1993. Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol.Gen. Genet. 241: 49–56.

    Article  CAS  Google Scholar 

  17. Svab, Z. and Maliga, P. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc.Natl.Acad.Sci.USA 90: 913–917.

    Article  CAS  Google Scholar 

  18. Macintosh, S. C., et al. 1990. Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important species.J. Invertebr.Pathol. 56: 258–266.

    Article  CAS  Google Scholar 

  19. Moar, W.J., Masson, L., Brousseau, R. and Trumble, J.T. 1990. Toxicity to Spodoptera exigua and Trichoplusia ni of individual Pl protoxins and sporulated cultures of Bacillus thuringiensis subsp. kurstaki HD-1 and NRD-12. Appl Environ Microbiol. 56: 2480–2483.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Beegle, C.C., Lewis, L.C., Lynch, R.E. and Martinez, A.J. 1981. Interaction of larval age and antibiotic on the susceptibility of three insect species to Bacillus thuringiensis. J. Invert. Pathol. 37: 143–153.

    Article  CAS  Google Scholar 

  21. Maliga, P. 1993. Towards plastid transformation in flowering plants. TIBTECH. 11: 101–107.

    Article  CAS  Google Scholar 

  22. Wong, E.Y., Hironaka, C.M. and Fischhoff, D.A. 1992. Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants. Plant Mol. Biol. 20: 81–93.

    Article  CAS  Google Scholar 

  23. Weising, K., Schell, J. and Khal, G. 1988. Foreign genes in plants: transfer, structure, expression, and applications. Ann. Rev. Genet. 22: 421–477.

    Article  CAS  Google Scholar 

  24. Roush, R.T. 1994. Managing pests and their resistance to Bacillus thuringiensis: can transgenic crops be better than sprays? Biocontrol science and Technology. 4: 501–516.

    Article  Google Scholar 

  25. Kareiva, P. 1993. Transgenic plants on trial. Nature 363: 580–581.

    Article  Google Scholar 

  26. Gould, F. and Anderson, A. 1991. Effects of Bacillus thuringiensis and HD-73 delta-endotoxin on growth, behavior, and fitness of susceptible and toxin-adapted strains of Heliothis virescens (Lepidoptera: Noctuidae) Environmental Entomology. 36: 289–300.

  27. Adang, M.J. et al. 1985. Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36: 289–300.

    Article  CAS  Google Scholar 

  28. Zoubenko, O.V., Allison, L.A., Svab, Z. and Maliga, P. 1994. Efficient targeting of foreign genes into the tobacco plastid genome. Nucl. Acids Res. 22: 3819–3824.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McBride, K., Svab, Z., Schaaf, D. et al. Amplification of a Chimeric Bacillus Gene in Chloroplasts Leads to an Extraordinary Level of an Insecticidal Protein in Tobacco. Nat Biotechnol 13, 362–365 (1995). https://doi.org/10.1038/nbt0495-362

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0495-362

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing