Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid

Abstract

Mycobacterium tuberculosis is a natural mutant in oxyR, a close homolog of the central regulator of peroxide stress response in enteric bacteria. Inactivation of oxyR is specific for M. tuberculosis and other members of the M. tuberculosis complex. This phenomenon appears as a paradox due to the ability of this organism to parasitize host macrophages, in which the ingested organisms are likely to be exposed to reactive oxygen intermediates. However, the surprising finding that M. tuberculosis has multiple deletions, nonsense and frameshift mutations in oxyR may help explain the exceptionally high sensitivity of M. tuberculosis to the potent antituberculosis agent isoniazid. One of the genes affected by oxyR lesions, ahpC (encoding an alkylhydroperoxide reductase) may determine the intrinsic sensitivity of mycobacteria to isoniazid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kochi, A. 1991. The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle 72: 1–6.

    Article  CAS  Google Scholar 

  2. Bloom, B.R. and Murray, C.J.L. 1994. Tuberculosis: commentary on a reemergent killer. Science 257: 1055–1064.

    Article  Google Scholar 

  3. Colston, M.J. and Davis, E.O. 1994. The ins and outs of protein splicing elements. Mol. Microbiol. 12: 359–363.

    Article  CAS  Google Scholar 

  4. Dannenberg, A.M.J. and Rook, G.A.W. 1994. Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses—dual mechanisms that control bacillary multiplication, pp. 459–483 in Tuberculosis: Pathogenesis, protection and control. Bloom, B.R. (ed.). ASM Press, Washington, D.C.

    Chapter  Google Scholar 

  5. Fenton, M.J. and Vermeulen, M.W. 1996. Immunopathology of tuberculosis: roles of macrophages and monocytes. Infect. Immun. 64: 683–690.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacobs, W.R., Kalpana, G.V., Cirrilo, J.D., Pascopella, L., Snapper, S.B., Udani, R.A., Jones, W., Barletta, R.G. and Bloom, B.R. 1991. Genetic systems for mycobacteria. Methods Enzymol. 204: 537–555.

    Article  CAS  Google Scholar 

  7. Musser, J.M. 1995. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev. 8: 496–514.

    Article  CAS  Google Scholar 

  8. Russell, D.G. 1995. Mycobacterium and Leishmania: stowaways in the endoso-mal network. Trends Cell. Biol. 5: 125–128.

    Article  CAS  Google Scholar 

  9. Young, D.B. and Cole, S.T. 1993. Leprosy, tuberculosis, and the new genetics. J. Bacteriol. 175: 1–6.

    Article  CAS  Google Scholar 

  10. Zhang, Y. and Young, D.B. 1993. Molecular mechanisms of isoniazid: a drug at the front line of tuberculosis control. Trends Microbiol. 1: 109–113.

    Article  CAS  Google Scholar 

  11. Deretic, V., Philipp, W., Dhandayuthapani, S., Mudd, M.H., Curcic, R., Garbe, T. et al. 1995. Myobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol. Microbiol. 17: 889–900.

    Article  CAS  Google Scholar 

  12. Dhandayuthapani, S., Via, I.E., Thomas, C.A., Horowitz, P.M., Deretic, D., Deretic, V. 1995. Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Mol. Microbiol. 17: 901–912.

    Article  CAS  Google Scholar 

  13. Dhandayuthapani, S., Zhang, Y., Mudd, M.H. and Deretic, V. Oxidative stress response and its role in sensitivity to isonicotinic acid hydrazide in Mycobacterium species: characterization and induclbility of ahpC by peroxides in M. smegmatis and lack of expression in M. aurum and M. tuberculosis . J. Bacteriol. 178: 12.

  14. Sherman, D.R., Sabo, P.J., Mickey, M.J., Arain, T.M., Mahairas, G.G., Yuan, Y. et al. 1995. Disparate resposes to oxidative stress in a saprophytic and pathogenic mycobacteria. Proc. Natl. Acad. Sci. USA 92: 6625–6629.

    Article  CAS  Google Scholar 

  15. Winder, F.G. 1982. Mode of action of the animycobacteral agents and associated aspects of the molecular biology of the mycobacteriaa, pp. 354–438 in The Biology of the Mycobacteria. Ratledge, C. and Stanford, J.S. (eds.). Academic Press, London.

    Google Scholar 

  16. Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Urn, K.S., Wilson, T. et al. 1994. inha, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis . Science 263: 227–230.

    Article  CAS  Google Scholar 

  17. Dessen, A., Quemard, A., Blanchard, J.S., Jacobs, W.R. and Sacchettini, J.C. 1995. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis . Science 267: 1638–1641.

    Article  CAS  Google Scholar 

  18. Johnsson, K., King, D.S. and Schultz, P.G. 1995. Studies on the mechanism of action of isoniazid and ethionamide in the chemotherapy of tuberculosis. J. Am. Chem. Soc. 117: 5009–5010

    Article  CAS  Google Scholar 

  19. Youatt, J. 1969. A review of the action of isoniazid. Am. Rev. Respir. Dis. 99: 729–749.

    CAS  Google Scholar 

  20. Gayathri-Devi, B., Shaila, M.S., Ramakrishnan, T. and Gopinathan, K.P. 1975. The purification and properties of peroxidase in Mycobacterium tuberculosis H37Rv and its possible role in the mechanism of action of isonicotinic acid hydrazide. Biochem. J. 149: 187–197.

    Article  Google Scholar 

  21. Bekierkunst, A. 1996. Nicotinamide-adenine dinucleotide exposed to isoniazad. Science 152: 525–526.

    Article  Google Scholar 

  22. Kasarov, L.B. and Moat, A.G. 1972. Metabolism of nicotinamide adenine dinucleotide in human and bovine strains of Mycobacterium tuberculosis . J. Bacteriol. 110: 600–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kruger-Thiemer, E. 1958. Isonicotinic acid hypothesis of the antituberculous action of isoniazid. Am. Rev. Tuberc. 77: 364–367.

    CAS  Google Scholar 

  24. Seydel, J., Schaper, K.-J., Wempe, E. and Cordes, H.R. 1976. Mode of action and quantitative structure-activity correlations of tuberculostatic drugs of the isonicotinic acid hydrazide type. J. Med. Chem. 19: 483–492.

    Article  CAS  Google Scholar 

  25. Herman, D.J. and Weber, M.M. 1980. Isonizaid interaction with tyrosine as a possible mode of action of the drug in mycobacteria. Antimicrob. Agents Chemother. 17: 170–178.

    Article  CAS  Google Scholar 

  26. Long, E.R. 1958. pp. 362–388 in The Chemistry and Chemotherapy of Tuberculosis. Balliere, Tindall & Cox, Ltd., London.

    Google Scholar 

  27. Quemard, A., Lacaveand, C. and Laneelle, G. 1991. Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum . Antibicrob. Agents Chemother. 35: 1035–1039.

    Article  CAS  Google Scholar 

  28. Winder, F.G. 1960. Catalase and peroxidase in Mycobacteria. Am. Rev. Respir. Dis. 81: 68–78.

    Article  CAS  Google Scholar 

  29. Shoeb, H.A., Bowman, B.U., Ottolenghi, A.C. and Merola, A.J. 1985. Enzymatic and nonenzymatic superoxide-generating reactions of isoniazid. Antimicrob. Agents Chemother. 27: 408–412.

    Article  CAS  Google Scholar 

  30. Shoeb, H.A., Bowman, B.U., Ottolenghi, A.C. and Merola, A.J. 1985. Evidence for the generation of active oxygen by isoniazid treatment of extracts of Mycobacterium tuberculosis H37Ra . Antimicrob, Agents Chemother. 27: 404–407.

    Article  CAS  Google Scholar 

  31. Shoeb, H.A., Bowman, B.U., Ottolenghi, A.C. and Merola, A.J. 1985. Peroxidase-mediated oxidation of isoniazid. Antimicrob. Agents Chemother. 27: 399–403.

    Article  CAS  Google Scholar 

  32. Zinner, K., Vidgal, C.C.C., Duran, N. and Cilento, G. 1977. Oxidation of isonicotininc acid hydrazide by the peroxidase system. Arch. Biochem. Biophys. 180: 452–458.

    Article  CAS  Google Scholar 

  33. Christman, M.F., Morgan, R.W., Jacobson, F.S. and Ames, B.N. 1985. Positive control of a regulation for defences against oxidative stress and some heat-shock proteins in Salmonella typhimurium . Cell 41: 753–762.

    Article  CAS  Google Scholar 

  34. Christman, M.F., Storz, G. and Ames, B.N. 1989. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium is homologous to a family of bacterial regulatory proteins. Proc. Natl. Acad. Sci. USA 86: 3484–3488.

    Article  CAS  Google Scholar 

  35. Toledano, M.B., Kullik, I., Trinh, F., Baird, P.T., Schneider, T.D. and Storz, G. 1994. Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78: 897–909.

    Article  CAS  Google Scholar 

  36. Farr, S.B. and Kogoma, T. 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium . Microbiol. Rev. 55: 561–585.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Middlebrook, G. and Cohn, M.L. 1953. Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli. Science 118: 297–299.

    Article  CAS  Google Scholar 

  38. Middlebrook, G. 1954. Isoniazid-resistance and catalase activity of tubercle bacilli. Am. Rev. Tuberc. 69: 471–472.

    CAS  PubMed  Google Scholar 

  39. Zhang, Y., Heym, B., Allen, B., Young, D. and Cote, S.T. 1992. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis . Nature 358: 591–593.

    Article  CAS  Google Scholar 

  40. Heym, B., Alzari, P.M., Honors, N. and Cole, S.T. 1995. Missense mutations in the catalase-peroxidase gene, katG are associated with isoniazid resistance in Mycobacterium tuberculosis . Mol. Microbiol. 15: 235–245.

    Article  CAS  Google Scholar 

  41. Cockerill, F.R., Uhl, J.R., Temesgen, Z., Zhang, Y., Stockman, L., Roberts, G.D. et al 1995. Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase associated with isoniazid resistance. J. Infect. Dis. 171: 240–245

    Article  CAS  Google Scholar 

  42. Rouse, D.A. and Morris, S.L. 1995. Molecular mechanisms of isoniazid resistance in Mycobacterium tuberculosis and Mycobacterium bovis . Infect. Immun. 63: 1427–1433.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pretorius, G.S., Hekten, R.D., Siigel, R., Eisenach, K.D. and Victor, T.C. 1995. Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare. Antimicrob. Agents Chemother. 39: 2276–2281.

    Article  CAS  Google Scholar 

  44. Rouse, D.A., Li, Z., Bai, G.-H. and Morris, S.L. 1995. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis . Antimicrob. Agents Chemother. 39: 2472–2477.

    Article  CAS  Google Scholar 

  45. Bergh, S. and Cole, S.T. 1994. MycDB: an integrated mycobacterial database. Mol. Microbiol. 12: 534–574.

    Article  Google Scholar 

  46. Zhang, Y., Garbe, T. and Young, D. 1993. Transformation with katG restores isoniazid-sensitlvity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol. Microbiol. 8: 521–524.

    Article  CAS  Google Scholar 

  47. Milano, A., De Rossi, E., Gusberti, L., Heym, B., Marone, P. and Riccardi, G. 1996. The katE gene, which encodes the catalase HPII of Mycobacterium avium . Mol. Microbiol. 19: 113–123.

    Article  CAS  Google Scholar 

  48. Rosner, J.L. 1993. Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid. Antimicrob. Agents Chemother. 37: 2251–2253.

    Article  CAS  Google Scholar 

  49. Yamaguchi, R., Mutsuo, K., Yamazaki, A., Takahashi, M., Fukusawa, Y., Wada, M. and Abe, C. 1992. Cloning and expression of the gene for the Avi-3 antigen of Mycobacterium avium and mapping of its epitopes. Infect. Immun. 60: 1210–1216.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schell, M.A. 1993. Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47: 597–626.

    Article  CAS  Google Scholar 

  51. Jacobson, F.S., Morgan, R.W., Christman, M.F. and Ames, B.N. 1989. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. J. Biol. Chem. 264: 1488–1496.

    CAS  PubMed  Google Scholar 

  52. Storz, G.S., Christman, M.F., Sies, H. and Ames, B.N. 1987. Spontanous mutagenesis and oxidative damage to DNA in Salmonella typhimurium . Proc. Natl. Acad. Sci. USA 84: 8917–8921.

    Article  CAS  Google Scholar 

  53. Chae, H.Z., Robinson, K., Poole, L.B., Church, G., Storz, G. and Rhee, S.G. 1994. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91: 7017–7021).

    Article  CAS  Google Scholar 

  54. Zhang, Y., Dhandayuthapani, S. and Deretic, V. 1996. Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc. Natl. Acad. Sci. USA. In press.

  55. Le Lirzin, M.J.N., Vivien, J.N., Lepeuple, A., Thibier, R. and Pretet, C. 1971. Rapid microbiological estimation of serum isoniazid. Rev. Tuberc. Pneumol. 35: 350–356.

    CAS  Google Scholar 

  56. Heym, B. and Cole, S.T. 1992. Isolation and characterization of isoniazid-resistant mutants of Mycobacterium smegmatis and M. aurum . Res. Microbiol. 143: 721–730.

    Article  CAS  Google Scholar 

  57. Wilson, T.M. and Collins, D.M. 1996. aphC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Mol. Microbiol. 19: 1025–1034.

    Article  CAS  Google Scholar 

  58. Sherman, D.R., Mdluli, K., Hickey, M.J., Arain, T.M., Morris, S.L., Barry, C.E. and Stover, C.K. 1996. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis . Science 272: 1641–1643.

    Article  CAS  Google Scholar 

  59. Sreevantsan, S., Zhang, Y., Deretic, V. and Musser, J.M. Analysis of the oxyR-ahpC region in isoniazid-resistant and susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deretic, V., Pagán-Ramos, E., Zhang, Y. et al. The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid. Nat Biotechnol 14, 1557–1561 (1996). https://doi.org/10.1038/nbt1196-1557

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1196-1557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing