Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vitamin A controls epithelial/mesenchymal interactions through Ret expression

Abstract

Mutations or rearrangements in the gene encoding the receptor tyrosine kinase RET result in Hirschsprung disease, cancer and renal malformations. The standard model of renal development involves reciprocal signaling between the ureteric bud epithelium, inducing metanephric mesenchyme to differentiate into nephrons, and metanephric mesenchyme, inducing the ureteric bud to grow and branch1,2. RET and GDNF (a RET ligand) are essential mediators of these epithelial–mesenchymal interactions3. Vitamin A deficiency has been associated with widespread embryonic abnormalities, including renal malformations4. The vitamin A signal is transduced by nuclear retinoic acid receptors (RARs). We previously showed that two RAR genes, Rara and Rarb2, were colocalized in stromal mesenchyme, a third renal cell type, where their deletion led to altered stromal cell patterning, impaired ureteric bud growth and downregulation of Ret in the ureteric bud5,6. Here we demonstrate that forced expression of Ret in mice deficient for both Rara and Rarb2 (Rara−/−Rarb2−/−) genetically rescues renal development, restoring ureteric bud growth and stromal cell patterning. Our studies indicate the presence of a new reciprocal signaling loop between the ureteric bud epithelium and the stromal mesenchyme, dependent on Ret and vitamin A. In the first part of the loop, vitamin-A–dependent signals secreted by stromal cells control Ret expression in the ureteric bud. In the second part of the loop, ureteric bud signals dependent on Ret control stromal cell patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cortical stromal cell population is important for generating retinoid-dependent signals required for renal morphogenesis.
Figure 2: Dietary vitamin A controls Ret expression in the ureteric bud.
Figure 3: Vitamin-A–dependent signals control branching morphogenesis and Ret expression in vitro.
Figure 4: A Hoxb7Ret9 transgene rescues renal development in Rara−/−Rarb2−/− mice.
Figure 5: Vitamin A and Ret control a new reciprocal loop between stromal mesenchyme and the ureteric bud epithelium.

Similar content being viewed by others

References

  1. Grobstein, C. Inductive epithelio-mesenchymal interaction in cultured organ rudiments. Science 113, 52–55 (1953).

    Article  Google Scholar 

  2. Grobstein, C. Inductive interaction in the development of the mouse metanephros. J. Exp. Zool. 130, 319–340 (1955).

    Article  Google Scholar 

  3. Sariola, H. & Saarma, M. GDNF and its receptors in the regulation of the ureteric branching. Int. J. Dev. Biol. 43, 413–418 (1999).

    CAS  PubMed  Google Scholar 

  4. Wilson, J.G. & Warkany, J. Malformations in the genito-urinary tract induced by maternal vitamin A deficiency in the rat. Am. J. Anat. 83, 357–407 (1948).

    Article  CAS  PubMed  Google Scholar 

  5. Mendelsohn, C., Batourina, E., Fung, S., Gilbert, T. & Dodd, J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126, 1139–1148 (1999).

    CAS  PubMed  Google Scholar 

  6. Mendelsohn, C. et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–2771 (1994).

    CAS  PubMed  Google Scholar 

  7. Duester, G. Families of retinoid dehydrogenases regulating vitamin A function production of visual pigment and retinoic acid. Eur. J. Biochem. 267, 4315–4324 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Napoli, J.L. Retinoic acid: its biosynthesis and metabolism. Prog. Nucleic Acid Res. Mol. Biol. 63, 139–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet. 21, 444–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hatini, V., Huh, S.O., Herzlinger, D., Soares, V.C. & Lai, E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 10, 1467–1478 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. White, J.C. et al. Defects in embryonic hindbrain development and fetal resorption resulting from vitamin A deficiency in the rat are prevented by feeding pharmacological levels of all-trans-retinoic acid. Proc. Natl. Acad. Sci. USA 95, 13459–13464 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. White, J.C., Highland, M., Kaiser, M. & Clagett-Dame, M. Vitamin A deficiency results in the dose-dependent acquisition of anterior character and shortening of the caudal hindbrain of the rat embryo. Dev. Biol. 220, 263–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Srinivas, S. et al. Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis. Dev. Genet. 24, 241–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Vilar, J., Gilbert, T., Moreau, E. & Merlet-Benichou, C. Metanephros organogenesis is highly stimulated by vitamin A derivatives in organ culture. Kidney Int. 49, 1478–1487 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Thang, S.H., Kobayashi, M. & Matsuoka, I. Regulation of glial cell line-derived neurotrophic factor responsiveness in developing rat sympathetic neurons by retinoic acid and bone morphogenetic protein-2. J. Neurosci. 20, 2917–2925 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moreau, E., Vilar, J., Lelievre-Pegorier, M., Merlet-Benichou, C. & Gilbert, T. Regulation of c-ret expression by retinoic acid in rat metanephros: implication in nephron mass control. Am. J. Physiol. 275, F938–945 (1998).

    CAS  PubMed  Google Scholar 

  17. Robertson, K. & Mason, I. Expression of ret in the chicken embryo suggests roles in regionalisation of the vagal neural tube and somites and in development of multiple neural crest and placodal lineages. Mech. Dev. 53, 329–344 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Patrone, G., Puliti, A., Bocciardi, R., Ravazzolo, R. & Romeo, G. Sequence and characterisation of the RET proto-oncogene 5′ flanking region: analysis of retinoic acid responsiveness at the transcriptional level. FEBS Lett. 419, 76–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Schuchardt, A., D'Agati, V., Pachnis, V. & Costantini, F. Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 122, 1919–1929 (1996).

    CAS  PubMed  Google Scholar 

  21. Srinivas, S., Wu, Z., Chen, C.M., D'Agati, V. & Costantini, F. Dominant effects of RET receptor misexpression and ligand-independent RET signaling on ureteric bud development. Development 126, 1375–1386 (1999).

    CAS  PubMed  Google Scholar 

  22. Sariola, H. et al. Antibodies to cell surface ganglioside GD3 perturb inductive epithelial-mesenchymal interactions. Cell 54, 235–245 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Quaggin, S.E. et al. The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development 126, 5771–5783 (1999).

    CAS  PubMed  Google Scholar 

  24. Weller, A., Sorokin, L., Illgen, E.M. & Ekblom, P. Development and growth of mouse embryonic kidney in organ culture and modulation of development by soluble growth factor. Dev. Biol. 144, 248–261 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Dudley, A.T., Godin, R.E. & Robertson, E.J. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 13, 1601–1613 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brenner, B.M. & Mackenzie, H.S. Nephron mass as a risk factor for progression of renal disease. Kidney Int. Suppl. 63, S124–127 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Q. Al-awqati, J. Barasch, D. Herzlinger, T. Jessell, A. Pierani, S. Sockanathan and R. Hen for discussions and critical reading of the manuscript; E. Lai and R. Levinson for the Foxd1 probe; S. Sockanathan and T. Jessell for the Raldh2 probe; and P. Chambon for Rara−/−Rarb2−/− mutants. This work was supported by NIH grants to C.M. and F.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy Mendelsohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batourina, E., Gim, S., Bello, N. et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet 27, 74–78 (2001). https://doi.org/10.1038/83792

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing