Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The sphingosine 1-phosphate receptor S1P2 maintains the homeostasis of germinal center B cells and promotes niche confinement

Abstract

Mice deficient in sphingosine 1-phosphate receptor type 2 (S1P2) develop diffuse large B cell lymphoma. However, the role of S1P2 in normal germinal center (GC) physiology is unknown. Here we show that S1P2-deficient GC B cells outgrew their wild-type counterparts in chronically established GCs. We found that antagonism of the kinase Akt mediated by S1P2 and its downstream mediators Gα12, Gα13 and p115RhoGEF regulated cell viability and was required for growth control in chronically proliferating GCs. Moreover, S1P2 inhibited GC B cell responses to follicular chemoattractants and helped confine cells to the GC. In addition, S1P2 overexpression promoted the centering of activated B cells in the follicle. We suggest that by inhibiting Akt activation and migration, S1P2 helps restrict GC B cell survival and localization to an S1P-low niche at the follicle center.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth advantage of GC B cells deficient in S1P2, Gα12-Gα13 or p115RhoGEF in chronic GCs.
Figure 2: Resistance to apoptosis and greater Akt activation in GC B cells deficient in S1P2, Gα12-Gα13 or p115RhoGEF.
Figure 3: Akt activation confers an advantage to mucosal GCs, and S1P2 regulates translation in GC cells.
Figure 4: Regulation of the migration and positioning of GC B cells by S1P2.
Figure 5: S1P2 acts together with CXCR5 and FDCs to promote GC B cell clustering.
Figure 6: Degradation of S1P by B cells.
Figure 7: S1P2 directs activated B cells to the GC and the center of the follicle.

Similar content being viewed by others

References

  1. MacLennan, I.C.M. Germinal Centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  2. Allen, C.D., Okada, T. & Cyster, J.G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    Article  CAS  Google Scholar 

  3. Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28, 243–273 (2010).

    Article  CAS  Google Scholar 

  4. Goodnow, C.C., Vinuesa, C.G., Randall, K.L., Mackay, F. & Brink, R. Control systems and decision making for antibody production. Nat. Immunol. 11, 681–688 (2010).

    Article  CAS  Google Scholar 

  5. Vikstrom, I. et al. Mcl-1 is essential for germinal center formation and B cell memory. Science 330, 1095–1099 (2010).

    Article  CAS  Google Scholar 

  6. Allen, C.D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5, 943–952 (2004).

    Article  CAS  Google Scholar 

  7. Pereira, J.P., Kelly, L.M., Xu, Y. & Cyster, J.G. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460, 1122–1126 (2009).

    Article  CAS  Google Scholar 

  8. Pereira, J.P., Kelly, L.M. & Cyster, J.G. Finding the right niche: B cell migration in the early phases of T-dependent antibody responses. Int. Immunol. 22, 413–419 (2010).

    Article  CAS  Google Scholar 

  9. Schwab, S.R. & Cyster, J.G. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 8, 1295–1301 (2007).

    Article  CAS  Google Scholar 

  10. Venkataraman, K. et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102, 669–676 (2008).

    Article  CAS  Google Scholar 

  11. Schwab, S.R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    Article  CAS  Google Scholar 

  12. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).

    Article  CAS  Google Scholar 

  13. Pham, T.H. et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 207, 17–27 (2010).

    Article  CAS  Google Scholar 

  14. Spiegel, S. & Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4, 397–407 (2003).

    Article  CAS  Google Scholar 

  15. Luckey, C.J. et al. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 103, 3304–3309 (2006).

    Article  CAS  Google Scholar 

  16. Kono, M. et al. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J. Biol. Chem. 279, 29367–29373 (2004).

    Article  CAS  Google Scholar 

  17. Cattoretti, G. et al. Targeted disruption of the S1P2 sphingosine 1-phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res. 69, 8686–8692 (2009).

    Article  CAS  Google Scholar 

  18. Ishii, I., Fukushima, N., Ye, X. & Chun, J. Lysophospholipid receptors: signaling and biology. Annu. Rev. Biochem. 73, 321–354 (2004).

    Article  CAS  Google Scholar 

  19. Ruppel, K.M. et al. Essential role for Gα13 in endothelial cells during embryonic development. Proc. Natl. Acad. Sci. USA 102, 8281–8286 (2005).

    Article  CAS  Google Scholar 

  20. Rieken, S. et al. G12/G13 family G proteins regulate marginal zone B cell maturation, migration, and polarization. J. Immunol. 177, 2985–2993 (2006).

    Article  CAS  Google Scholar 

  21. Girkontaite, I. et al. Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nat. Immunol. 2, 855–862 (2001).

    Article  CAS  Google Scholar 

  22. Rubtsov, A. et al. Lsc regulates marginal-zone B cell migration and adhesion and is required for the IgM T-dependent antibody response. Immunity 23, 527–538 (2005).

    Article  CAS  Google Scholar 

  23. Siehler, S. Regulation of RhoGEF proteins by G12/13-coupled receptors. Br. J. Pharmacol. 158, 41–49 (2009).

    Article  CAS  Google Scholar 

  24. Ming, X.F. et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol. Cell. Biol. 22, 8467–8477 (2002).

    Article  CAS  Google Scholar 

  25. Wolfrum, S. et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler. Thromb. Vasc. Biol. 24, 1842–1847 (2004).

    Article  CAS  Google Scholar 

  26. Sanchez, T. et al. PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proc. Natl. Acad. Sci. USA 102, 4312–4317 (2005).

    Article  CAS  Google Scholar 

  27. Schuppel, M., Kurschner, U., Kleuser, U., Schafer-Korting, M. & Kleuser, B. Sphingosine 1-phosphate restrains insulin-mediated keratinocyte proliferation via inhibition of Akt through the S1P2 receptor subtype. J. Invest. Dermatol. 128, 1747–1756 (2008).

    Article  Google Scholar 

  28. Li, Z. et al. Regulation of PTEN by Rho small GTPases. Nat. Cell Biol. 7, 399–404 (2005).

    Article  CAS  Google Scholar 

  29. Ahmed, N.N., Grimes, H.L., Bellacosa, A., Chan, T.O. & Tsichlis, P.N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci. USA 94, 3627–3632 (1997).

    Article  CAS  Google Scholar 

  30. Engelman, J.A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562 (2009).

    Article  CAS  Google Scholar 

  31. Skoura, A. & Hla, T. Regulation of vascular physiology and pathology by the S1P2 receptor subtype. Cardiovasc. Res. 82, 221–228 (2009).

    Article  CAS  Google Scholar 

  32. Michaud, J., Im, D.S. & Hla, T. Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J. Immunol. 184, 1475–1483 (2010).

    Article  CAS  Google Scholar 

  33. Allen, C.D., Okada, T., Tang, H.L. & Cyster, J.G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  Google Scholar 

  34. Browning, J.L. Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease. Immunol. Rev. 223, 202–220 (2008).

    Article  CAS  Google Scholar 

  35. Pham, T.H., Okada, T., Matloubian, M., Lo, C.G. & Cyster, J.G. S1P1 receptor signaling overrides retention mediated by Gαi–coupled receptors to promote T cell egress. Immunity 28, 122–133 (2008).

    Article  CAS  Google Scholar 

  36. Sinha, R.K., Park, C., Hwang, I.Y., Davis, M.D. & Kehrl, J.H. B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 30, 434–446 (2009).

    Article  CAS  Google Scholar 

  37. Ma, X.M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318 (2009).

    Article  Google Scholar 

  38. Mamane, Y. et al. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS ONE 2, e242 (2007).

    Article  Google Scholar 

  39. Wendel, H.G. et al. Dissecting eIF4E action in tumorigenesis. Genes Dev. 21, 3232–3237 (2007).

    Article  CAS  Google Scholar 

  40. Hsieh, A.C. et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 17, 249–261 (2010).

    Article  CAS  Google Scholar 

  41. Wieman, H.L., Wofford, J.A. & Rathmell, J.C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell 18, 1437–1446 (2007).

    Article  CAS  Google Scholar 

  42. Misra, R.S. et al. Gαq-containing G proteins regulate B cell selection and survival and are required to prevent B cell-dependent autoimmunity. J. Exp. Med. 207, 1775–1789 (2010).

    Article  CAS  Google Scholar 

  43. Omori, S.A. et al. Regulation of class-switch recombination and plasma cell differentiation by phosphatidylinositol 3-kinase signaling. Immunity 25, 545–557 (2006).

    Article  CAS  Google Scholar 

  44. Suzuki, A. et al. Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J. Exp. Med. 197, 657–667 (2003).

    Article  CAS  Google Scholar 

  45. Schenck, A. et al. The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133, 486–497 (2008).

    Article  CAS  Google Scholar 

  46. Ishii, M., Kikuta, J., Shimazu, Y., Meier-Schellersheim, M. & Germain, R.N. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J. Exp. Med. 207, 2793–2798 (2010).

    Article  CAS  Google Scholar 

  47. Carmona-Fontaine, C. et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957–961 (2008).

    Article  CAS  Google Scholar 

  48. Francis, S.A., Shen, X., Young, J.B., Kaul, P. & Lerner, D.J. Rho GEF Lsc is required for normal polarization, migration, and adhesion of formyl-peptide-stimulated neutrophils. Blood 107, 1627–1635 (2006).

    Article  CAS  Google Scholar 

  49. Dengler, H.S. et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat. Immunol. 9, 1388–1398 (2008).

    Article  CAS  Google Scholar 

  50. Reif, K. et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416, 94–99 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Danial (Dana-Farber) for Bad-deficient bone marrow; K. Rajewsky (Children's Hospital and Immune Disease Institute, Harvard) for mice expressing the Cr2-Cre transgene; J. Browning (Biogen Idec) for lymphotoxin-β receptor–Fc fusion protein; J. An for help with the mouse colony; and S. Schwab for critical reading of the manuscript. Supported by the National Science Foundation (J.A.G.), Howard Hughes Medical Institute (J.G.C.) and the US National Institutes of Health (Intramural Research Program; National Institute of Diabetes and Digestive and Kidney Diseases (R.L.P.); HL65590 and HL44907 to S.R.C.; and AI45073 to J.G.C.).

Author information

Authors and Affiliations

Authors

Contributions

J.A.G., B.C. and J.G.C. designed the experiments; J.A.G. did most of the experiments; B.C. did some of the early experiments; K.S. and J.A.G. did the imaging experiments; C.D.C.A. and Y.X. did the initial gene-expression analysis; T.H.S. and J.A.G. did the experiments with PTEN inhibitor; L.D.W. and S.R.C. generated Gα12-deficient mice; D.P. and S.R.C. generated Gna12−/−Gna13f/fMx1-Cre bone marrow; R.L.P. generated S1P2-deficient mice; J.A.G., K.S., B.C. and J.G.C. analyzed the data; and J.A.G. and J.G.C. wrote the paper.

Corresponding author

Correspondence to Jason G Cyster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1607 kb)

Supplementary Video 1

Movement of S1pr2+/+ Hy10 GC B cells within FDC network. (MPG 5540 kb)

Supplementary Video 2

Movement of S1pr2−/− Hy10 GC B cells around the perimeter of the FDC network. (MPG 5490 kb)

Supplementary Video 3

Tracks of wild-type and S1pr2−/− Hy10 GC B cells in and around PE-IC-labeled FDC network. (MPG 20721 kb)

Supplementary Video 4

Movement of S1pr2+/+ Hy10 GC B cells within a GC surrounded by an excess of labeled follicular B cells. (MPG 9826 kb)

Supplementary Video 5

Movement of S1pr2−/− Hy10 GC B cells around the perimeter of a GC surrounded by an excess of labeled follicular B cells. (MPG 8424 kb)

Supplementary Video 6

Tracks of wild-type and S1pr2−/− Hy10 GC B cells with respect to the surface of the GC, defined by the distribution of wild-type follicular and GC B cells. (MPG 25770 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, J., Suzuki, K., Cho, B. et al. The sphingosine 1-phosphate receptor S1P2 maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat Immunol 12, 672–680 (2011). https://doi.org/10.1038/ni.2047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing