Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures

Abstract

The self-organized growth of nanostructures on surfaces could offer many advantages in the development of new catalysts, electronic devices and magnetic data-storage media1,2,3,4,5. The local density of electronic states on the surface at the relevant energy scale strongly influences chemical reactivity6,7,8,9, as does the shape of the nanoparticles10. The electronic properties of surfaces also influence the growth and decay of nanostructures such as dimers, chains and superlattices of atoms or noble metal islands9,11,12,13,14,15,16. Controlling these properties on length scales shorter than the diffusion lengths of the electrons and spins (some tens of nanometres for metals) is a major goal in electronics and spintronics17. However, to date, there have been few studies of the electronic properties of self-organized nanostructures18,19,20. Here we report the self-organized growth of macroscopic superlattices of Ag or Cu nanostructures on Au vicinal surfaces, and demonstrate that the electronic properties of these systems depend on the balance between the confinement and the perturbation of the surface states caused by the steps and the nanostructures' superlattice. We also show that the local density of states can be modified in a controlled way by adjusting simple parameters such as the type of metal deposited and the degree of coverage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homogeneous electronic properties of gold vicinal surfaces.
Figure 2: Periodic electronic patterns on a self-organized superlattice of silver nanostructures on Au(7 8 8).
Figure 3: Local view of Ag/Au nanostructures.
Figure 4: Electronic density for different growth parameters.

Similar content being viewed by others

References

  1. Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article  CAS  Google Scholar 

  2. Rosei, F. Nanostructured surfaces: challenges and frontiers in nanotechnology. J. Phys. Condens. Matter 16, S1373–S1436 (2004).

    Article  CAS  Google Scholar 

  3. Brune, H., Giovannini, M., Bromann, K. & Kern, K. Self-organised growth of nanostructure arrays on strain-relief patterns. Nature 394, 451–453 (1998).

    Article  CAS  Google Scholar 

  4. Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 (2002).

    Article  CAS  Google Scholar 

  5. Repain, V., Berroir, J. M., Rousset, S. & Lecoeur, J. Growth of self-organised cobalt nanostructures on Au(111) vicinal surfaces. Surf. Sci. 447, L152–L156 (2000).

    Article  CAS  Google Scholar 

  6. Hoffmann, R. A chemical and theoretical way to look at bonding on surfaces. Rev. Mod. Phys. 60, 601–628 (1988).

    Article  CAS  Google Scholar 

  7. Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

    Article  CAS  Google Scholar 

  8. Aballe, L., Barinov, A., Locatelli, A., Heun, S. & Kiskinova, M. Tuning surface reactivity via electron quantum confinement. Phys. Rev. Lett. 93, 196103 (2004).

  9. Lau, K. H. & Kohn, W. Indirect long-range oscillatory interaction between adsorbed atoms. Surf. Sci. 75, 69–85 (1978).

    Article  CAS  Google Scholar 

  10. Lopez, N. & Nörskov, J. K. Catalytic CO oxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 124, 11262–11263 (2002).

    Article  CAS  Google Scholar 

  11. Crain, J. N., Stiles, M. D., Stroscio, J. A. & Pierce, D. T. Electronic effects in the length distribution of atom chains. Phys. Rev. Lett. 96, 156801 (2006).

    Article  CAS  Google Scholar 

  12. Morgenstern, K., Braun, K.-F. & Rieder, K.-H. Direct imaging of Cu dimer formation, motion, and interaction with Cu atoms on Ag(111). Phys. Rev. Lett. 93, 56102 (2004).

    Article  Google Scholar 

  13. Silly, F. et al. Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea. Phys. Rev. Lett. 92, 16101 (2004).

    Article  Google Scholar 

  14. Memmel, N. & Bertel, E. Role of surface states for the epitaxial growth on metal surfaces. Phys. Rev. Lett. 75, 485–488 (1995).

    Article  CAS  Google Scholar 

  15. Fichthorn, K. A. & Merrick, M. L. Nanostructures at surfaces from substrate-mediated interactions. Phys. Rev. B 68, 41404 (2003).

    Article  Google Scholar 

  16. Morgenstern, K., Lægsgaard, E. & Besenbacher, F. Quantum size effects in adatom island decay. Phys. Rev. Lett. 94, 166104 (2005).

    Article  Google Scholar 

  17. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance. Nature 403, 512–515 (2000).

    Article  CAS  Google Scholar 

  18. Losio, R. et al. Band splitting for Si(557)-Au: Is it spin-charge separation? Phys. Rev. Lett. 86, 4632–4635 (2001).

    Article  CAS  Google Scholar 

  19. Ternes, M. et al. Scanning-tunneling spectroscopy of surface-state electrons scattered by a slightly disordered two-dimensional dilute solid: Ce on Ag(111). Phys. Rev. Lett. 93, 146805 (2004).

    Article  Google Scholar 

  20. Schiller, F., Ruiz-Osés, M., Cordón, J. & Ortega, J. Scattering of surface states at step edges in nanostripe arrays. Phys. Rev. Lett. 95, 66805 (2005).

    Article  CAS  Google Scholar 

  21. Ortega, J. E. et al. One-dimensional versus two-dimensional surface states on stepped Cu(111). Phys. Rev. B 65, 165413 (2002).

    Article  Google Scholar 

  22. Mugarza, A. & Ortega, J. E. Electronic states at vicinal surfaces. J. Phys. Condens. Matter 15, S3281–S3310 (2003).

    Article  CAS  Google Scholar 

  23. Baumberger, F. et al. Step-lattice-induced band-gap opening at the Fermi level. Phys. Rev. Lett. 92, 16803 (2004).

    Article  CAS  Google Scholar 

  24. Barth, J. V., Brune, H., Ertl, G. & Behm, R. J. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B 42, 9307–9318 (1990).

    Article  CAS  Google Scholar 

  25. Didiot, C. et al. Reconstruction-induced multiple gaps in the weak coupling limit: The surface bands of Au(111) vicinal surfaces. Phys. Rev. B 74, R81404 (2006).

    Article  Google Scholar 

  26. Hasegawa, Y. & Avouris, P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 71, 1071–1074 (1993).

    Article  CAS  Google Scholar 

  27. Li, J., Schneider, W. D., Berndt, R. & Crampin, S. Electron confinement to nanoscale Ag islands on Ag(111): A quantitative study. Phys. Rev. Lett. 80, 3332–3335 (1998).

    Article  CAS  Google Scholar 

  28. Chen, W., Madhavan, V., Jamneala, T. & Crommie, M. F. Scanning tunneling microscopy observation of an electronic superlattice at the surface of clean gold. Phys. Rev. Lett. 80, 1469–1472 (1998).

    Article  CAS  Google Scholar 

  29. Pons, S., Mallet, P. & Veuillen, J.-Y. Electron confinement in nickel and copper nanostructures on Cu(111). Phys. Rev. B 64, 193408 (2001).

    Article  Google Scholar 

  30. Hansmann, M., Pascual, J. I. Ceballos, G., Rust, H.-P. & Horn, K. Confinement and dimensionality at a stepped surface: Scanning tunneling spectroscopy study of Cu(554). Phys. Rev. B 67, 121409 (2003).

    Article  Google Scholar 

  31. Ignatiev, P. A., Stepanyuk, V. S., Klavsyuk, A. L., Hergert, W. & Bruno, P. Electronic confinement on stepped Cu(111) surfaces: Ab initio study. Phys. Rev. B 75, 155428 (2007).

    Article  Google Scholar 

  32. Ovesson, S., Bogicevic, A. & Lundqvist, B. I. Origin of compact triangular islands in metal-on-metal growth. Phys. Rev. Lett. 83, 2608–2611 (1999).

    Article  CAS  Google Scholar 

  33. Rousset, S., Repain, V., Baudot, G., Garreau, Y. & Lecoeur, J. Self-ordering of Au(111) vicinal surfaces and application to nanostructure organised growth. J. Phys. Condens. Matter 15, S3363–S3392 (2003).

    Article  CAS  Google Scholar 

  34. Cercellier, H. et al. Interplay between structural, chemical and spectroscopic properties of Ag/Au(111) epitaxial ultrathin films: A way to tune the rashba coupling. Phys. Rev. B 73, 195413 (2006).

  35. Pons, S., Mallet, P., Magaud, L. & Veuillen, J.-Y. Investigation of the Ni(111) Shockley-like surface state using confinement to artificial nanostructures. Europhys. Lett. 61, 375–381 (2003).

    Article  CAS  Google Scholar 

  36. Pennec, Y. et al. Supramolecular gratings for tuneable confinement of electrons on metal surfaces. Nature Nanotech. 2, 99–103 (2007).

    Article  CAS  Google Scholar 

  37. Clair, S., Pons, S., Brune, H., Kern, K. & Barth, J. V. Mesoscopic metallosupramolecular texturing by hierarchic assembly. Angew. Chem. Int. Edn 44, 7294–7297 (2005).

    Article  CAS  Google Scholar 

  38. Bürgi, L., Knorr, N., Brune, H., Schneider, M. A. & Kern, K. Two-dimensional electron gas at noble-metal surfaces Appl. Phys. A 75, 141–145 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank L. Moreau for his technical support.

Author information

Authors and Affiliations

Authors

Contributions

C.D. and S.P. performed the experiments. C.D., S.P. and B.K. analysed the data. S.P. wrote the resulting paper. All the authors conceived and designed the experiments, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Stephane Pons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didiot, C., Pons, S., Kierren, B. et al. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures. Nature Nanotech 2, 617–621 (2007). https://doi.org/10.1038/nnano.2007.301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing