Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

A decade of AIRE

Abstract

In 1997, the autoimmune regulator (AIRE) gene was identified as the locus underlying susceptibility to the polyendocrine autoimmune disease known as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). In the intervening 10 years, it has become increasingly clear that this rare disorder has provided us with an illuminative window on one of the most fundamental processes of the immune system — the establishment and maintenance of self tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aire: from transcriptional regulation to tolerance induction.

References

  1. Betterle, C., Greggio, N. A. & Volpato, M. Autoimmune polyglandular syndrome type I. J. Clin. Endocrinol. Metab. 83, 1049–1055 (1998).

    Article  CAS  Google Scholar 

  2. Leonard, M. Chronic idiopathic hypoparathyroidism with superimposed Addison's disease in a child. J. Clin. Endocrinol. Metab. 6, 493–495 (1946).

    Article  CAS  Google Scholar 

  3. Vogel, A., Strassburg, C. P., Obermayer-Straub, P., Brabant, G. & Manns, M. P. The genetic background of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy and its autoimmune disease components. J. Mol. Med. 80, 201–211 (2002).

    Article  CAS  Google Scholar 

  4. Gylling, M. et al. ss-cell autoantibodies, human leukocyte antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Clin. Endocrinol. Metab. 85, 4434–4440 (2000).

    CAS  PubMed  Google Scholar 

  5. Halonen, M. et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J. Clin. Endocrinol. Metab. 87, 2568–2574 (2002).

    Article  CAS  Google Scholar 

  6. Bjorses, P. et al. Genetic homogeneity of autoimmune polyglandular disease type I. Am. J. Hum. Genet. 59, 879–886 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nature Genet. 17, 399–403 (1997).

  8. Nagamine, K. et al. Positional cloning of the APECED gene. Nature Genet. 17, 393–398 (1997).

    Article  CAS  Google Scholar 

  9. Gibson, T. J., Ramu, C., Gemund, C. & Aasland, R. The APECED polyglandular autoimmune syndrome protein, AIRE-1, contains the SAND domain and is probably a transcription factor. Trends Biochem. Sci. 23, 242–244 (1998).

    Article  CAS  Google Scholar 

  10. Heino, M. et al. Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem. Biophys. Res. Commun. 257, 821–825 (1999).

    Article  CAS  Google Scholar 

  11. Klamp, T. et al. Expression profiling of autoimmune regulator AIRE mRNA in a comprehensive set of human normal and neoplastic tissues. Immunol. Lett. 106, 172–179 (2006).

    Article  CAS  Google Scholar 

  12. Zuklys, S. et al. Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune- polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J. Immunol. 165, 1976–1983 (2000).

    Article  CAS  Google Scholar 

  13. Peterson, P. et al. APECED: a monogenic autoimmune disease providing new clues to self-tolerance. Immunol. Today 19, 384–386 (1998).

    Article  CAS  Google Scholar 

  14. Wang, C. Y., Shi, J. D., Davoodi-Semiromi, A. & She, J. X. Cloning of Aire, the mouse homologue of the autoimmune regulator (AIRE) gene responsible for autoimmune polyglandular syndrome type 1 (ASP1). Genomics 55, 322–326 (1999).

    Article  CAS  Google Scholar 

  15. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the Aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  16. Anderson, M. S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    Article  CAS  Google Scholar 

  17. Kishimoto, H. & Sprent, J. Negative selection in the thymus includes semimature T cells. J. Exp. Med. 185, 263–271 (1997).

    Article  CAS  Google Scholar 

  18. Kyewski, B. & Klein, L. A central role for central tolerance. Ann. Rev. Immunol. 24, 571–606 (2006).

    Article  CAS  Google Scholar 

  19. Ramsey, C. et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11, 397–409 (2002).

    Article  CAS  Google Scholar 

  20. Kuroda, N. et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J. Immunol. 174, 1862–1870 (2005).

    Article  CAS  Google Scholar 

  21. Jiang, W., Anderson, M. S., Bronson, R., Mathis, D. & Benoist, C. Modifier loci condition autoimmunity provoked by Aire deficiency. J. Exp. Med. 202, 805–815 (2005).

    Article  CAS  Google Scholar 

  22. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C. C. Aire regulates negative selection of organ-specific T cells. Nature Immunol. 4, 350–354 (2003).

    Article  CAS  Google Scholar 

  23. Derbinski, J. et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202, 33–45 (2005).

    Article  CAS  Google Scholar 

  24. Devoss, J. et al. Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J. Exp. Med. 203, 2727–2735 (2006).

    Article  CAS  Google Scholar 

  25. Gavanescu, I., Kessler, B., Ploegh, H., Benoist, C. & Mathis, D. Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity. Proc. Natl Acad. Sci. USA 104, 4583–4587 (2007).

    Article  CAS  Google Scholar 

  26. Liston, A. et al. Gene dosage—limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J. Exp. Med. 200, 1015–1026 (2004).

    Article  CAS  Google Scholar 

  27. Niki, S. et al. Alteration of intra-pancreatic target-organ specificity by abrogation of Aire in NOD mice. J. Clin. Invest. 116, 1292–1301 (2006).

    Article  CAS  Google Scholar 

  28. Kekalainen, E. et al. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Immunol. 178, 1208–1215 (2007).

    Article  Google Scholar 

  29. Andersson, J. et al. The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients. J. Immunol. 174, 3143–3147 (2005).

    Article  CAS  Google Scholar 

  30. Chen, Z., Benoist, C. & Mathis, D. How defects in central tolerance impinge on a deficiency in regulatory T cells. Proc. Natl Acad. Sci. USA 102, 14735–14740 (2005).

    Article  CAS  Google Scholar 

  31. Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nature Immunol. 8, 351–358 (2007).

    Article  CAS  Google Scholar 

  32. Heino, M. et al. RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. Eur. J. Immunol. 30, 1884–1893 (2000).

    Article  CAS  Google Scholar 

  33. Kogawa, K. et al. Expression of AIRE gene in peripheral monocyte/dendritic cell lineage. Immunol. Lett. 80, 195–198 (2002).

    Article  CAS  Google Scholar 

  34. Sillanpaa, N. et al. Autoimmune regulator induced changes in the gene expression profile of human monocyte-dendritic cell-lineage. Mol. Immunol. 41, 1185–1198 (2004).

    Article  CAS  Google Scholar 

  35. Ramsey, C. et al. Increased antigen presenting cell-mediated T cell activation in mice and patients without the autoimmune regulator. Eur. J. Immunol. 36, 305–317 (2006).

    Article  CAS  Google Scholar 

  36. Lee, J. W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nature Immunol. 8, 181–190 (2007).

    Article  CAS  Google Scholar 

  37. Bottomley, M. J. et al. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nature Struct. Biol. 8, 626–633 (2001).

    Article  CAS  Google Scholar 

  38. Isaac, A., Wilcox, K. W. & Taylor, J. L. SP100B, a repressor of gene expression preferentially binds to DNA with unmethylated CpGs. J. Cell. Biochem. 98, 1106–1122 (2006).

    Article  CAS  Google Scholar 

  39. Bienz, M. The PHD finger, a nuclear protein-interaction domain. Trends Biochem. Sci. 31, 35–40 (2006).

    Article  CAS  Google Scholar 

  40. Akiyoshi, H. et al. Subcellular expression of autoimmune regulator is organized in a spatiotemporal manner. J. Biol. Chem. 279, 33984–33991 (2004).

    Article  CAS  Google Scholar 

  41. Pitkanen, J. et al. The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J. Biol. Chem. 275, 16802–16809 (2000).

    Article  CAS  Google Scholar 

  42. Pitkanen, J., Vahamurto, P., Krohn, K. & Peterson, P. Subcellular localization of the autoimmune regulator protein. J. Biol. Chem. 276, 19597–19602 (2001).

    Article  CAS  Google Scholar 

  43. Tao, Y. et al. AIRE recruits multiple transcriptional components to specific genomic regions through tethering to nuclear matrix. Mol. Immunol. 43, 335–345 (2006).

    Article  CAS  Google Scholar 

  44. Pitkanen, J. et al. Cooperative activation of transcription by autoimmune regulator AIRE and CBP. Biochem. Biophys. Res. Commun. 333, 944–953 (2005).

    Article  CAS  Google Scholar 

  45. Jacob, F., Perrin, D., Sanchez, C. & Monod, J. Operon: a group of genes with the expression coordinated by an operator. C. R. Hebd. Séances Acad. Sci. 250, 1727–1729 (1960).

    CAS  PubMed  Google Scholar 

  46. Purohit, S., Kumar, P. G., Laloraya, M. & She, J. X. Mapping DNA-binding domains of the autoimmune regulator protein. Biochem. Biophys. Res. Commun. 327, 939–944 (2005).

    Article  CAS  Google Scholar 

  47. Kumar, P. G. et al. The autoimmune regulator (AIRE) is a DNA-binding protein. J. Biol. Chem. 276, 41357–41364 (2001).

    Article  CAS  Google Scholar 

  48. Johnnidis, J. B. et al. Chromosomal clustering of genes controlled by the Aire transcription factor. Proc. Natl Acad. Sci. USA 102, 7233–7238 (2005).

    Article  CAS  Google Scholar 

  49. Uchida, D. et al. AIRE functions as an E3 ubiquitin ligase. J. Exp. Med. 199, 167–172 (2004).

    Article  CAS  Google Scholar 

  50. Bottomley, M. J. et al. NMR structure of the first PHD finger of autoimmune regulator protein (AIRE1). Insights into autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) disease. J. Biol. Chem. 280, 11505–11512 (2005).

    Article  CAS  Google Scholar 

  51. Pontynen, N. et al. Aire deficient mice do not develop the same profile of tissue-specific autoantibodies as APECED patients. J. Autoimmun. 27, 96–104 (2006).

    Article  Google Scholar 

  52. Meager, A. et al. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 3, e289 (2006).

    Article  Google Scholar 

  53. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nature Genet. 15, 293–297 (1997).

    Article  CAS  Google Scholar 

  54. Vafiadis, P. et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nature Genet. 15, 289–292 (1997).

    Article  CAS  Google Scholar 

  55. Aaltonen, J., Bjorses, P., Sandkuijl, L., Perheentupa, J. & Peltonen, L. An autosomal locus causing autoimmune disease: autoimmune polyglandular disease type I assigned to chromosome 21. Nature Genet. 8, 83–87 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Benoist–Mathis Laboratory's work on Aire has been supported by the National Institutes of Health (NIH; ROI DK59658), and by the William T. Young Chair in Diabetes Research. We would like to thank the following laboratory members for their important contributions: J. Abramson, M.S. Anderson, I. Gavanescu, M. Giraud, D. Gray, M. Guerau-Vilanova, W. Jiang, J. Johnnidis, A. Koh, E. Venanzi and J. Villasenor.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

APECED

FURTHER INFORMATION

Benoist–Mathis laboratory homepage

Glossary

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy

(APECED). A rare human autoimmune disorder that is inherited in an autosomal recessive manner and is characterized by various endocrine deficiencies, chronic mucocutaneous candidiasis and ectodermal dystrophies. It is caused by a number of different mutations in the gene that encodes autoimmune regulator (AIRE).

E3-ubiquitin ligase

An enzyme that is required to attach the molecular tag ubiquitin to proteins. Depending on the position and number of the ubiquitin molecules that are attached, the ubiquitin tag can target proteins for degradation in the proteasomal complex, sort them to specific subcellular compartments or modify their biological activity.

Non-obese diabetic mice

(NOD mice). Mice that spontaneously develop a form of autoimmunity that closely resembles human type 1 diabetes.

Nude mice

Mice homozygous for a mutation in the Foxn1 gene, which causes both hairlessness and defective formation of the thymus, and therefore results in a lack of mature T cells.

PML nuclear bodies

One type of nuclear speckles of unknown function that contains several proteins, including the promyelocytic leukaemia protein PML.

Scurfy mice

Mice with a spontaneous mutation in the FOXP3 transcription factor (also known as Scurfin), which leads to a rapidly fatal lymphoproliferative disease, causing death by about 4 weeks of age. FOXP3-deficient mice lack the population of CD25+ regulatory T cells.

SP100 family of transcriptional co-activators

The nuclear-matrix-associated protein SP100 belongs to a family of related proteins that contain nuclear-localization signals, dimerization domains and DNA-binding domains. They interact with other transcription factors to co-activate gene transcription.

Stromal cells

Cells of non-lymphoid origin that form the framework of each organ. These cells can support adhesion, proliferation and survival of distinct cell subsets.

Tolerance

A term that denotes lymphocyte non-responsiveness to antigen, but implies an active process, not simply a passive lack of response.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathis, D., Benoist, C. A decade of AIRE. Nat Rev Immunol 7, 645–650 (2007). https://doi.org/10.1038/nri2136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2136

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing