Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor

Abstract

The receptor tyrosine kinase encoded by the neu/erbB-2 proto-oncogene is constitutively activated by a single valine to glutamic acid substitution at position 664 in the predicted membrane-spanning sequence of the receptor. We have explored the structural changes involved in receptor activation with polarized FTIR and magic angle spinning NMR spectroscopy. The hydrophobic transmembrane sequence folds into a well-defined α-helical structure spanning the membrane bilayer. Measurements of the pKa and 13C chemical shift anisotropy of Glu 664 reveal that the side chain carboxyl group is protonated and strongly hydrogen bonded. These studies provide direct evidence for glutamate hydrogen-bonding interactions in the mechanism of receptor dimerization and activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schlessinger, J. & Ulrich, A. Growth factor signalling by receptor tyrosine kinases. Neuron 9, 383–391 (1992).

    Article  CAS  Google Scholar 

  2. Hynes, N.E. & Stern, D.F. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta 1198, 165–184 (1994).

    Google Scholar 

  3. Bargmann, C.I., Hung, M.-C. & Weinberg, R.A. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45, 649–657 (1986).

    Article  CAS  Google Scholar 

  4. Bargmann, C.I. & Weinberg, R.A. Oncogenic activation of the neu- encoded receptor protein by point mutation and deletion. EMBO J. 7, 2043–2052 (1988).

    Article  CAS  Google Scholar 

  5. Cao, H., Bangalore, L., Bormann, B.J. & Stern, D.F. A subdomain in the transmembrane domain is necessary for p185neu* activation. EMBO J. 11, 923–932 (1992).

    Article  CAS  Google Scholar 

  6. Cao, H., Bangalore, L., Dompe, C., Bormann, B.J. & Stern, D.F. An extra cysteine proximal to the transmembrane domain induces differential crosslinking of p185neu and p185neu*. J. Biol. Chem. 267, 20489–20492 (1992).

    CAS  PubMed  Google Scholar 

  7. Sternberg, M.J. & Gullick, W.J. Neu receptor dimerization. Nature 339, 587 (1989).

    Article  CAS  Google Scholar 

  8. Sternberg, M.J.E. & Gullick, W.J. A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Eng. 3, 245–248 (1990).

    Article  CAS  Google Scholar 

  9. Brandt-Rauf, P.W., Rackovsky, S. & Pincus, M.R. Correlation of the structure of the transmembrane domain of the neu oncogene encoded p185 protein with its function. Proc. Natl. Acad. Sci. USA 87, 8660–8664 (1990).

    Article  CAS  Google Scholar 

  10. Smith, S.O., Jonas, R., Braiman, M.S. & Bormann, B.J. Structure and orientation of the transmembrane domain of glycophorin A in lipid bilayers. Biochemistry 33, 633–641 (1994).

    Google Scholar 

  11. Smith, S.O. & Bormann, B.J. Determination of helix-helix interactions in membranes by rotational resonance NMR. Proc. Natl. Acad. Sci. USA 92, 488–491 (1995).

    Article  CAS  Google Scholar 

  12. Surewicz, W.K., Mantsch, H.H. & Chapman, D. Determination of protein secondary structure by fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389–394 (1993).

    Article  CAS  Google Scholar 

  13. Braiman, M.S. & Rothschild, K.J. Fourier transform infrared techniques for probing membrane protein structure. Annu. Rev. Biophys. Biophys. Chem. 17, 541–570 (1989).

    Article  Google Scholar 

  14. Byler, M.D. & Susi, H. Examination of the secondary structure of proteins by Deconvolved FTIR spectra. Biopolymers 25, 469–487 (1986).

    Article  CAS  Google Scholar 

  15. Venyaminov, S.U. & Kalnin, N.N. Quantitative IR spectroscopy of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in alpha-, beta-, and random coil conformations. Biopolymers 30, 1259–1271 (1990).

    Article  CAS  Google Scholar 

  16. Venyaminov, S.U. & Kalnin, N.N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. III. Estimation of the protein secondary structure. Biopolymers 30, 1273–1280 (1990).

    Article  Google Scholar 

  17. Venyaminov, S.U. & Kalnin, N.N. Quantitative IR spectroscopy of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30, 1243–1257 (1990).

    Article  CAS  Google Scholar 

  18. Kauppinen, J.K., Moffatt, D.J., Mantsch, H.H. & Cameron, D.G. Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl. Spectrosc. 35, 271–276 (1981).

    Article  CAS  Google Scholar 

  19. Chothia, C., Levitt, M. & Richardson, D. Helix-to-helix packing in proteins. J. Mol. Biol. 145, 215–250 (1981).

    Article  CAS  Google Scholar 

  20. Arkin, I.T., Rothman, M., Ludlam, C.F.C., Aimoto, S., Engelman, D.M., Rothschild, K.J. & Smith, S.O. Structural model of the phospholamban ion channel complex in phospholipid membranes. J. Mol. Biol. 248, 824–834 (1995).

    Article  CAS  Google Scholar 

  21. Kantor, H.L. & Prestegard, J.P. Fusion of phosphatidylcholine bilayer vesicles: role of free fatty acid. Biochemistry 17, 3592–3597 (1978).

    Article  CAS  Google Scholar 

  22. Tsui, F.C., Ojcius, D.M. & Hubbell, W.L. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys. J. 49, 459–468 (1986).

    Article  CAS  Google Scholar 

  23. Ptak, M., Egret-Charlier, M., Sanson, A. & Bouloussa, O. A NMR study of the ionization of fatty acids, fatty amines and N-acylamino acids incorporated in phosphatidylcholine vesicles. Biochim. Biophys. Acta 600, 387–397 (1980).

    Article  CAS  Google Scholar 

  24. Adams, G.A. & Rose, J.K. Structural requirements of a membrane-spanning domain for protein anchoring and cell surface transport. Cell 41, 1007–1015 (1985).

    Article  CAS  Google Scholar 

  25. Gu, Z., Zambrano, R. & McDermott, A. Hydrogen bonding of carboxyl groups in solid-state amino acids and peptides: comparison of carbon chemical shielding, infrared frequencies, and structures. J. Am. Chem. Soc. 116, 6368–6372 (1994).

    Article  CAS  Google Scholar 

  26. Herzfeld, J. & Berger, A.E. Side band intensities in NMR spectra of samples spinning at the magic angle. J. Chem. Phys. 73, 6021–6030 (1980).

    Article  CAS  Google Scholar 

  27. Sequeira, A., Rajagopal, H. & Chidambaram, R. A neutron diffraction study of the structure of L-glutamic acid.HCL. Acta Crystallogr. B28, 2514–2519 (1972).

    Article  Google Scholar 

  28. Miyazaki, J., Hideg, K. & Marsh, D. Interfacial ionization and partitioning of membrane-bound local anaesthetics. Biochim. Biophys. Acta 1103, 62–68 (1992).

    Article  CAS  Google Scholar 

  29. Gullick, W.J. et al. Three dimensional structure of the transmembrane region of the proto-oncogenic and oncogenic forms of the neu protein. EMBO J. 11, 43–48 (1992).

    Article  CAS  Google Scholar 

  30. Lofts, F.J., Hurst, H.C., Sternberg, M.J.E. & Gullick, W.J. Specific short transmembrane sequences can inhibit transformation by the mutant neu growth factor receptor in vitro and in vivo. Oncogene 8, 2813–2820 (1993).

    CAS  PubMed  Google Scholar 

  31. Downward, J. et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307, 521–527 (1984).

    Article  CAS  Google Scholar 

  32. Birchmeier, C., Birnbaum, D., Waitches, G., Fasano, O. & Wigler, M. Characterization of an activated human ros gene. Mol. Cell Biol. 6, 3109–3116 (1986).

    Article  CAS  Google Scholar 

  33. Gamett, D.C., Tracey, S.E. & Robinson, H.L. Differences in sequences encoding the carboxyl-terminal domain of the epidermal growth factor receptor correlate with differences in disease potential of viral erbB genes. Proc Natl. Acad. Sci. USA 83, 6053–6057 (1986).

    Article  CAS  Google Scholar 

  34. Neckameyer, W.S., Shibuya, M., Hsu, M.-T. & Wang, L.-H. Proto-oncogene c-ros codes for a molecule with structural features common to those of growth factor receptors and displays tissue-specific and developmentally regulated expression. Mol. Cell Biol. 6, 1478–1486 (1986).

    Article  CAS  Google Scholar 

  35. Harrick, N.J. Internal reflection spectroscopy. Interscience Publishers, New York (1967).

    Google Scholar 

  36. Wolfe, W.F. & Zissis, G.J. in The Infrared Handbook ( U.S. Government Printing Office, Washington 1978).

    Google Scholar 

  37. Fringeli, U.P., Apell, H.J., Fringeli, M. & Lauger, P. Polarized infrared absorption of Na+/K+-ATPase studied by attenuated total reflection spectroscopy. Biochim. Biophys. Acta 984, 301–312 (1989).

    Article  CAS  Google Scholar 

  38. Tamm, L.K. & Tatulian, S.A. Orientation of functional and nonfunctional PTS permease signal sequences in lipid bilayers. A polarized attenuated total reflection infrared study. Biochemistry 32, 7720–7726 (1993).

    Article  CAS  Google Scholar 

  39. Miyazawa, T. & Blout, E.R. The infrared spectra of polypeptides in various conformations: amide I and amide II bands. J. Am. Chem. Soc. 83, 712–719 (1961).

    Article  CAS  Google Scholar 

  40. Bradbury, E.M. et al. The structure of the ω-form of poly-β-benzyl-L-aspartate. J. Mol. Biol. 5, 230–247 (1962).

    Article  CAS  Google Scholar 

  41. Tsuboi, M. Infrared dichroism and molecular conformation of α-form poly-γ-benzyl-L-glutamate. J. Polymer Sci. 59, 139–153 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S., Smith, C. & Bormann, B. Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor. Nat Struct Mol Biol 3, 252–258 (1996). https://doi.org/10.1038/nsb0396-252

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0396-252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing