Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A comparison of inner Solar System volcanism

Abstract

The volcanic landforms, eruptive sites and longevity of activity on Mercury and the Moon contrast substantially with those of Earth, Venus and Mars. Here, I synthesize global maps of volcanic and tectonic features for these five worlds and, from the collective records of volcanic activity in the inner Solar System, draw conclusions about the long-term behaviour of terrestrial planets in general. Mercury and the Moon differ from the larger planetary bodies in terms of not only size and composition (and so shorter periods of melt production) but also by their being affected by a horizontally compressive stress state arising from a reduction in planetary volume as they cooled. The phenomenon of global contraction also readily accounts for the dearth of widespread extensional tectonic structures on Mercury and the Moon. From this comparative analysis, the most promising extrasolar planets on which to focus future searches for evidence of active, radiogenically driven volcanism are probably the larger rocky bodies in a mature planetary system or those worlds in relatively young systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of major volcanic units and landforms on Mercury.
Fig. 2: Global distribution of major volcanic units and landforms on the Moon.
Fig. 3: Global distribution of major volcanic units and landforms on Earth.
Fig. 4: Global distribution of major volcanic units and landforms on Venus.
Fig. 5: Global distribution of major volcanic units and landforms on Mars.
Fig. 6: Schematic timeline of volcanic activity on the inner Solar System bodies.

planet images, NASA

Similar content being viewed by others

Data availability

For Fig. 1 (Mercury), the smooth plains are from ref. 11, with known volcanic plains from ref. 16. Sites of explosive volcanism are from ref. 5, and the impact craters shown are taken from ref. 89. Extensional structures within Borealis Planitia are from ref. 90 and the remainder (including those within Caloris Planitia) are from ref. 91.

For Fig. 2 (the Moon), the lunar mare boundaries are a Lunar Reconnaissance Orbiter Camera Shapefile Product (http://wms.lroc.asu.edu/lroc/rdr_product_select). Sites of near-surface intrusion are the aggregated floor-fractured craters from ref. 25, the volcanoes shown are those subtle, large shields described by ref. 28 and sites of lunar pyroclastic volcanism are from ref. 23. The extensional structures are graben mapped by ref. 92; the impact basins are from the catalogue constructed by ref. 93.

For Fig. 3 (Earth), the plate boundaries (and types) are from the Environmental Systems Research Institute (ESRI) ArcGIS ‘Plate Lines and Plate Polygons’ layer package. The (abyssal and hadal) seafloor units shown are from ref. 94. Major volcanoes are from the ESRI ‘volcano.shp’ file. Hotspot point data and large igneous province polygons are from the University of Texas Institute for Geophysics website (www-udc.ig.utexas.edu/external/plates/data/LIPS/Data), based on data compiled by ref. 95. The major continental rift zones are from the NASA Digital Tectonic Activity Map. All geological units shown for Fig. 4 (Venus) are from ref. 46; volcanic units ‘psh’ (shield plains), ‘rp1’ (regional plains 1) and ‘rp2’ (regional plains 2) have been combined, and are shown with tectonic unit ‘rz’ (rift zones). Individual volcanoes are from the Brown University Volcano Catalog (available via ftp://pdsimage2.wr.usgs.gov/pub/pigpen/venus/Volcano) and coronae are from ref. 96. For Fig. 5 (Mars), volcanic units and extensional structures (‘Graben axis’) are from ref. 39. Volcanic units from that source have been combined as follows: ‘lAv’ (Late Amazonian volcanic unit), ‘lAvf’ (Late Amazonian volcanic field unit), ‘Av’ (Amazonian volcanic unit), ‘AHv’ (Amazonian and Hesperian volcanic unit), ‘Hv’ (Late Hesperian volcanic unit), ‘lHvf’ (Late Hesperian volcanic field unit), ‘eHv’ (Early Hesperian volcanic unit), ‘lNv’ (Late Noachian volcanic unit), ‘Ave’ (Amazonian volcanic edifice), ‘Hve’ (Hesperian volcanic edifice unit), ‘Nve’ (Noachian volcanic edifice unit), ‘lAa’ (Late Amazonian apron unit) and ‘Aa’ (Amazonian apron unit). Volcanic edifices are from the Integrated Database of Planetary Features composite catalogue (https://planetarydatabase.wordpress.com/category/mars), and the impact basins in the map are from the global database of ref. 97, to which I added the outlines for the Argyre and Hellas basins.

References

  1. Solomon, S. C. et al. Return to Mercury: a global perspective on MESSENGER’s first Mercury flyby. Science 321, 59–62 (2008).

    ADS  Google Scholar 

  2. Head, J. W. et al. Volcanism on Mercury: evidence from the first MESSENGER flyby. Science 321, 69–72 (2008).

    ADS  Google Scholar 

  3. Kerber, L. et al. Explosive volcanic eruptions on Mercury: eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett. 285, 263–271 (2009).

    ADS  Google Scholar 

  4. Head, J. W. et al. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 333, 1853–1856 (2011).

    ADS  Google Scholar 

  5. Jozwiak, L. M., Head, J. W. & Wilson, L. Explosive volcanism on Mercury: analysis of vent and deposit morphology and modes of eruption. Icarus 302, 191–212 (2018).

    ADS  Google Scholar 

  6. Kaltenegger, L., Henning, W. G. & Sasselov, D. D. Detecting volcanism on extrasolar planets. Astrophys. J. 140, 1370–1380 (2010).

    ADS  Google Scholar 

  7. Misra, A., Krissansen-Totton, J., Koehler, M. C. & Sholes, S. Transient sulfate aerosols as a signature of exoplanet volcanism. Astrobiology 15, 462–477 (2015).

    ADS  Google Scholar 

  8. Peale, S. J., Cassen, P. & Reynolds, R. T. Melting of Io by tidal dissipation. Science 203, 892–894 (1979).

    ADS  Google Scholar 

  9. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    ADS  Google Scholar 

  10. Strom, R. G., Trask, J. J. & Guest, J. E. Tectonism and volcanism on Mercury. J. Geophys. Res. 80, 2478–2507 (1975).

    ADS  Google Scholar 

  11. Denevi, B. W. et al. The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets 118, 891–907 (2013).

    ADS  Google Scholar 

  12. Murchie, S. L. et al. Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: evidence for the origins of plains units and low-reflectance material. Icarus 254, 287–305 (2015).

    ADS  Google Scholar 

  13. Vander Kaaden, K. E. et al. Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the Mercurian surface: insights into the Mercurian mantle. Icarus 285, 155–168 (2017).

    ADS  Google Scholar 

  14. Whitten, J. L., Head, J. W., Denevi, B. W. & Solomon, S. C. Intercrater plains on Mercury: insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus 241, 97–113 (2014).

    ADS  Google Scholar 

  15. Davidson, J. & de Silva, S. in Encyclopedia of Volcanoes (eds Sigurdsson, H. et al.) 663–681 (Academic, 2000).

  16. Byrne, P. K. et al. Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett. 43, 7408–7416 (2016).

    ADS  Google Scholar 

  17. Klimczak, C., Crane, K. T., Habermann, M. A. & Byrne, P. K. The spatial distribution of Mercury’s pyroclastic activity and the relation to lithospheric weaknesses. Icarus 315, 115–123 (2018).

    ADS  Google Scholar 

  18. Prockter, L. M. et al. Evidence for young volcanism on Mercury from the third MESSENGER flyby. Science 329, 668–671 (2010).

    ADS  Google Scholar 

  19. Thomas, R. J., Rothery, D. A., Conway, S. J. & Anand, M. Long-lived explosive volcanism on Mercury. Geophys. Res. Lett. 41, 6084–6092 (2014).

    ADS  Google Scholar 

  20. Marchi, S. et al. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013).

    ADS  Google Scholar 

  21. Head, J. W. & Wilson, L. Lunar mare volcanism: stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 56, 2155–2175 (1992).

    ADS  Google Scholar 

  22. Shearer, C. K. et al. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).

    Google Scholar 

  23. Gaddis, L. R. et al. Compositional analyses of lunar pyroclastic deposits. Icarus 161, 262–280 (2003).

    ADS  Google Scholar 

  24. Thomas, R. J., Rothery, D. A., Conway, S. J. & Anand, M. Explosive volcanism in complex impact craters on Mercury and the Moon: influence of tectonic regime on depth of magmatic intrusion. Earth Planet. Sci. Lett. 431, 164–172 (2015).

    ADS  Google Scholar 

  25. Jozwiak, L. M., Head, J. W., Neumann, G. A. & Wilson, L. Observational constraints on the identification of shallow lunar magmatism: insights from floor-fractured craters. Icarus 283, 224–231 (2017).

    ADS  Google Scholar 

  26. Platz, T., Byrne, P. K., Massironi, M. & Hiesinger, H. Volcanism and tectonism across the inner Solar System: an overview. Geol. Soc. Spec. Publ. 401, 1–56 (2015).

    ADS  Google Scholar 

  27. Head, J. W. & Gifford, A. Lunar mare domes — classification and modes of origin. Moon Planet. 22, 235–258 (1980).

    ADS  Google Scholar 

  28. Spudis, P. D., McGovern, P. J. & Kiefer, W. S. Large shield volcanoes on the Moon. J. Geophys. Res. Planets 118, 1063–1081 (2013).

    ADS  Google Scholar 

  29. Terada, K., Anand, M., Sokol, A. K., Bischoff, A. & Sano, Y. Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature 450, 849–852 (2007).

    ADS  Google Scholar 

  30. Morota, T. et al. Timing and characteristics of the latest mare eruption on the Moon. Earth Planet. Sci. Lett. 302, 255–266 (2011).

    ADS  Google Scholar 

  31. Braden, S. E. et al. Evidence for basaltic volcanism on the Moon within the past 100 million years. Nat. Geosci. 7, 787–791 (2014).

    ADS  Google Scholar 

  32. Hiesinger, H. et al. in Recent Advances and Current Research Issues in Lunar Stratigraphy Vol. 477 (eds Ambrose, W. A. & Williams, D. A.) 1–51 (Geological Society of America, 2011).

  33. O’Neil, J. & Carlson, R. W. Building Archean cratons from Hadean mafic crust. Science 355, 1199–1201 (2017).

    ADS  Google Scholar 

  34. Sleep, N. H. & Windley, B. F. Archean plate tectonics: constraints and inferences. J. Geol. 90, 363–379 (1982).

    ADS  Google Scholar 

  35. McKinnon, W. B., Zahnle, K. K., Ivanov, B. A. & Melosh, H. J. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 969–1014 (Univ. Arizona Press, 1997).

  36. Philips, R. J. et al. Impact craters and Venus resurfacing history. J. Geophys. Res. 97, 15923–15948 (1992).

    ADS  Google Scholar 

  37. Arkani-Hamed, J. & Toksöz, M. N. Thermal evolution of Venus. Phys. Earth Planet. Int. 34, 232–250 (1984).

    ADS  Google Scholar 

  38. Smrekar, S. E. et al. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010).

    ADS  Google Scholar 

  39. Tanaka, K. L. et al. Geologic Map of Mars: U.S. Geological Survey Scientific Investigations Map 3292, scale 1:20,000,000 pamphlet (USGS, 2014); https://doi.org/10.3133/sim3292

  40. Greeley, R. & Schneid, B. D. Magma generation on Mars: amounts, rates, and comparisons with Earth, Moon, and Venus. Science 254, 996–998 (1991).

    ADS  Google Scholar 

  41. Nimmo, F. & Tanaka, K. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33, 133–161 (2005).

    ADS  Google Scholar 

  42. Carr, M. H. & Head, J. W. Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010).

    ADS  Google Scholar 

  43. Werner, S. C. The global Martian volcanic evolutionary history. Icarus 201, 44–68 (2009).

    ADS  Google Scholar 

  44. Hauber, E. et al. Very recent and wide-spread basaltic volcanism on Mars. Geophys. Res. Lett. 38, L10201 (2011).

    ADS  Google Scholar 

  45. Vaucher, J. et al. The volcanic history of central Elysium Planitia: implications for Martian magmatism. Icarus 204, 418–442 (2009).

    ADS  Google Scholar 

  46. Ivanov, M. A. & Head, J. W. The history of volcanism on Venus. Planet. Space Sci. 84, 66–92 (2013).

    ADS  Google Scholar 

  47. Bryan, S. E. & Ernst, R. E. Revised definition of large igneous provinces (LIPs). Earth Sci. Rev. 86, 175–202 (2008).

    ADS  Google Scholar 

  48. Global Volcanism Program Volcanoes of the World v. 4.6.6. (ed. Venzke, E.) (Smithsonian Institution, 2013).

  49. Stofan, E. R. et al. Global distribution and characteristics of coronae and related features on Venus: implications for origin and relation to mantle processes. J. Geophys. Res. 97, 13347–13378 (1992).

    ADS  Google Scholar 

  50. Plescia, J. B. Morphometric properties of Martian volcanoes. J. Geophys. Res. 109, E03003 (2004).

    ADS  Google Scholar 

  51. Brož, P., adek, O., Hauber, E. & Rossi, A. P. Scoria cones on Mars: detailed investigation of morphometry based on high-resolution digital elevation models. J. Geophys. Res. Planets 120, 1512–1527 (2015).

    ADS  Google Scholar 

  52. Bleacher, J. E. et al. Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. J. Geophys. Res. 112, E09005 (2007).

    ADS  Google Scholar 

  53. Michalski, J. R. & Bleacher, J. E. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars. Nature 502, 47–52 (2013).

    ADS  Google Scholar 

  54. Stevenson, D. J. Styles of mantle convection and their influence on planetary evolution. C. R. Geosci. 335, 99–11 (2003).

    Google Scholar 

  55. Ogawa, M. & Yanagisawa, T. Numerical models of Martian mantle evolution induced by magmatism and solid-state convection beneath stagnant lithosphere. J. Geophys. Res. 116, E08008 (2011).

    ADS  Google Scholar 

  56. Ogawa, M. Numerical models of Martian mantle evolution induced by magmatism and solid-state convection beneath stagnant lithosphere. J. Geophys. Res. Planets 119, 2317–2330 (2014).

    ADS  Google Scholar 

  57. Ogawa, M. Evolution of the interior of Mercury influenced by coupled magmatism–mantle convection system and heat flux from the core. J. Geophys. Res. Planets 121, 118–136 (2016).

    ADS  Google Scholar 

  58. Peplowski, P. N. et al. Variations in the abundances of potassium and thorium on the surface of Mercury: results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res. 117, E00L04 (2012).

    Google Scholar 

  59. Kiefer, W. S., Filiberto, J., Sandu, C. & Li, Q. The effects of mantle composition on the peridotite solidus: implications for the magmatic history of Mars. Geochim. Cosmochim. Ac. 162, 247–258 (2015).

    ADS  Google Scholar 

  60. Solomon, S. C. On volcanism and thermal tectonics on one-plate planets. Geophys. Res. Lett. 5, 461–464 (1978).

    ADS  Google Scholar 

  61. Byrne, P. K. et al. Mercury’s global contraction much greater than earlier estimates. Nat. Geosci. 7, 301–307 (2014).

    ADS  Google Scholar 

  62. Banks, M. E. et al. Morphometric analysis of small-scale lobate scarps on the Moon using data from the Lunar Reconnaissance Orbiter. J. Geophys. Res. 117, E00H11 (2012).

    Google Scholar 

  63. Watters, T. R. & Johnson, C. L. in Planetary Tectonics (eds Watters, T. R. & Schultz, R. A.) 121–182 (Cambridge Univ. Press, 2010).

  64. Freed, A. M. et al. On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury’s northern plains. J. Geophys. Res. 117, E00L06 (2012).

    Google Scholar 

  65. Solomon, S. C. & Head, J. W. Lunar mascon basins: lava filling, tectonics, and evolution of the lithosphere. Rev. Geophys. Space Phys. 18, 107–141 (1980).

    ADS  Google Scholar 

  66. Anderson, R. C. et al. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res. 106, 20563–20585 (2001).

    ADS  Google Scholar 

  67. Hauber, E., Grott, M. & Kronberg, P. Martian rifts: structural geology and geophysics. Earth Planet. Sci. Lett. 294, 393–410 (2010).

    ADS  Google Scholar 

  68. Roberts, J. H. & Barnouin, O. S. The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J. Geophys. Res. 117, E02007 (2012).

    ADS  Google Scholar 

  69. Padovan, S., Tosi, N., Plesa, A.-C. & Ruedas, T. Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nat. Commun. 8, 1945 (2017).

    ADS  Google Scholar 

  70. Michaut, C. & Pinel, V. Magma ascent and eruption triggered by cratering on the Moon. Geophys. Res. Lett. 45, 6408–6416 (2018).

    ADS  Google Scholar 

  71. Banks, M. E. et al. Duration of activity on lobate-scarp thrust faults on Mercury. J. Geophys. Res. Planets 120, 1751–1762 (2015).

    ADS  Google Scholar 

  72. Solomon, S. C. Mare volcanism and lunar crustal structure. Proc. Lunar Sci. Conf. 6, 1021–1042 (1975).

    ADS  Google Scholar 

  73. Wilson, L. & Head, J. W. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: theory). Icarus 283, 146–175 (2017).

    ADS  Google Scholar 

  74. Vander Kaaden, K. E. & McCubbin, F. M. Exotic crust formation on Mercury: consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets 120, 195–209 (2015).

    ADS  Google Scholar 

  75. Klimczak, C. Limits on the brittle strength of planetary lithospheres undergoing global contraction. J. Geophys. Res. Planets 120, 2135–2151 (2015).

    ADS  Google Scholar 

  76. Elkins-Tanton, L. T. Magma oceans in the inner Solar System. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).

    ADS  Google Scholar 

  77. Rolf, T., Zhu, M.-H., Wünnemann, K. & Werner, S. C. The role of impact bombardment history in lunar evolution. Icarus 286, 138–152 (2017).

    ADS  Google Scholar 

  78. Lourenço, D. L., Rozel, A. B., Gerya, T. & Tackley, P. J. Efficient cooling of rocky planets by intrusive magmatism. Nat. Geosci. 11, 322–327 (2018).

    ADS  Google Scholar 

  79. Nahm, A. L. & Schultz, R. A. Magnitude of global contraction on Mars from analysis of surface faults: implications for Martian thermal history. Icarus 211, 389–400 (2011).

    ADS  Google Scholar 

  80. Baratoux, D., Toplis, M. J., Monnereau, M. & Gasnault, O. Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 472, 338–341 (2011).

    ADS  Google Scholar 

  81. Rolf, T., Steinberger, B., Sruthi, U. & Werner, S. C. Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus. Icarus 313, 107–123 (2018).

    ADS  Google Scholar 

  82. Barclay, T. et al. A sub-Mercury-sized exoplanet. Nature 494, 452–454 (2013).

    ADS  Google Scholar 

  83. Dorn, C., Noack, L. & Rozel, A. B. Outgassing on stagnant-lid super-Earths. Astron. Astrophys. 614, A18 (2018).

    ADS  Google Scholar 

  84. Kite, E. S. & Ford, E. B. Habitability of exoplanet waterworlds. Astrophys. J. 864, 75 (2018).

    ADS  Google Scholar 

  85. Unterborn, C. T. & Panero, W. R. The pressure and temperature limits of likely rocky exoplanets. J. Geophys. Res. Planets 124, 1704–1716 (2019).

    ADS  Google Scholar 

  86. Santerne, A. et al. An Earth-sized exoplanet with a Mercury-like composition. Nat. Astron. 2, 393–400 (2018).

    ADS  Google Scholar 

  87. Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. The continental record and generation of continental crust. Geol. Soc. Am. Bull. 125, 14–32 (2013).

    ADS  Google Scholar 

  88. Cogley, J. G. Continental margins and the extent and number of the continents. Rev. Geophys. Space Phys. 22, 101–122 (1984).

    ADS  Google Scholar 

  89. Fassett, C. I. et al. The global population of large craters on Mercury and comparison with the Moon. Geophys. Res. Lett. 38, L10202 (2011).

    ADS  Google Scholar 

  90. Klimczak, C. et al. Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: strain analysis and implications for plains evolution. J. Geophys. Res. 117, E00L03 (2012).

    Google Scholar 

  91. Byrne, P. K., Klimczak, C. & Şengör, A. M. C. in Mercury: The View After MESSENGER (eds Solomon, S. et al.) 249–286 (Cambridge Univ. Press, 2018).

  92. Klimczak, C. Geomorphology of lunar grabens requires igneous dikes at depth. Geology 42, 963–966 (2014).

    ADS  Google Scholar 

  93. Kadish, S. J. et al. A global catalog of large lunar craters (≥20 km) from the lunar Orbiter Laser Altimeter. Lunar Planet. Sci. 42, 1006 (2011).

    ADS  Google Scholar 

  94. Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).

    ADS  Google Scholar 

  95. Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    ADS  Google Scholar 

  96. Stofan, E. R. et al. Preliminary analysis of an expanded corona database for Venus. Geophys. Res. Lett. 28, 4267–4270 (2001).

    ADS  Google Scholar 

  97. Robbins, S. J. & Hynek, B. M. A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J. Geophys. Res. 117, E05004 (2012).

    ADS  Google Scholar 

Download references

Acknowledgements

I thank C. I. Fassett, M. A. Ivanov and L. M. Jozwiak for providing several component datasets that constitute the map figures, and A. M. O’Halloran, C. J. Ahrens, R. M. Atkins, D. R. Bohnenstiehl, J. M. Chesnutt, C. Klimczak, C. L. Kling, F. M. McCubbin, L. K. Schaefer, A. M. C. Şengör and S. C. Solomon for their constructive feedback during the writing of the manuscript. I acknowledge support from North Carolina State University. This research made use of NASA’s Planetary Data System and Astrophysics Data System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul K. Byrne.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information Nature Astronomy thanks Alfred McEwan, Rosaly Lopes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrne, P.K. A comparison of inner Solar System volcanism. Nat Astron 4, 321–327 (2020). https://doi.org/10.1038/s41550-019-0944-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0944-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing