Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum technologies with optically interfaced solid-state spins

Abstract

Spins of impurities in solids provide a unique architecture to realize quantum technologies. A quantum register of electron and nearby nuclear spins in the lattice encompasses high-fidelity state manipulation and readout, long-lived quantum memory, and long-distance transmission of quantum states by optical transitions that coherently connect spins and photons. These features, combined with solid-state device engineering, establish impurity spins as promising resources for quantum networks, information processing and sensing. Focusing on optical methods for the access and connectivity of single spins, we review recent progress in impurity systems such as colour centres in diamond and silicon carbide, rare-earth ions in solids and donors in silicon. We project a possible path to chip-scale quantum technologies through sustained advances in nanofabrication, quantum control and materials engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The NV centre in diamond and nearby nuclear spins.
Fig. 2: The silicon–vacancy centre in diamond and colour centres in silicon carbide.
Fig. 3: Rare-earth ions in crystals and optically active donors in silicon.
Fig. 4: Quantum registers for quantum networks and computing.
Fig. 5: Diverse modalities and applications of quantum sensing with impurity spins.
Fig. 6: Photonic engineering for solid-state spins.

Similar content being viewed by others

References

  1. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    ADS  Google Scholar 

  2. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    ADS  Google Scholar 

  3. de Riedmatten, H. & Afzelius, M. in Engineering the Atom-Photon Interaction (eds Predojević, A. & Mitchell, M. W.) 241–273 (Springer, Cham, Switzerland, 2015).

  4. Munro, W. J., Azuma, K., Tamaki, K. & Nemoto, K. Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21, 78–90 (2015).

    ADS  Google Scholar 

  5. Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    ADS  MathSciNet  Google Scholar 

  6. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    ADS  MathSciNet  Google Scholar 

  7. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschritte Phys. 48, 771–783 (2000).

    ADS  MATH  Google Scholar 

  8. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    ADS  Google Scholar 

  9. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Google Scholar 

  10. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–736 (2010).

    ADS  Google Scholar 

  11. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS  Google Scholar 

  12. Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mater. 12, 483–493 (2013).

    ADS  Google Scholar 

  13. Lodahl, P. Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 3, 013001 (2018).

    ADS  Google Scholar 

  14. Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).

    ADS  Google Scholar 

  15. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    ADS  Google Scholar 

  16. Shiue, R. J. et al. Active 2D materials for on-chip nanophotonics and quantum optics. Nanophotonics 6, 1329–1342 (2017).

    Google Scholar 

  17. Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    ADS  Google Scholar 

  18. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    ADS  Google Scholar 

  19. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    ADS  Google Scholar 

  20. Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    ADS  Google Scholar 

  21. Jarmola, A., Acosta, V. M., Jensen, K., Chemerisov, S. & Budker, D. Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. Phys. Rev. Lett. 108, 197601 (2012).

    ADS  Google Scholar 

  22. Astner, T. et al. Solid-state electron spin lifetime limited by phononic vacuum modes. Nat. Mater. 17, 313–317 (2018).

    ADS  Google Scholar 

  23. Zhao, N. et al. Sensing single remote nuclear spins. Nat. Nanotech. 7, 657–662 (2012).

    ADS  Google Scholar 

  24. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    ADS  Google Scholar 

  25. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2012).

    Google Scholar 

  26. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    ADS  Google Scholar 

  27. Fuchs, G. D., Burkard, G., Klimov, P. V. & Awschalom, D. D. A quantum memory intrinsic to single nitrogen–vacancy centres in diamond. Nat. Phys. 7, 789–793 (2011).

    Google Scholar 

  28. Dréau, A., Maze, J. R., Lesik, M., Roch, J. F. & Jacques, V. High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond. Phys. Rev. B 85, 134107 (2012).

    ADS  Google Scholar 

  29. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    ADS  Google Scholar 

  30. Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    ADS  Google Scholar 

  31. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    ADS  Google Scholar 

  32. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    ADS  Google Scholar 

  33. Pfender, M. et al. Protecting a diamond quantum memory by charge state control. Nano Lett. 17, 5931–5937 (2017).

    ADS  Google Scholar 

  34. Jacques, V. et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 057403 (2009).

    ADS  Google Scholar 

  35. Falk, A. L. et al. Optical polarization of nuclear spins in silicon carbide. Phys. Rev. Lett. 114, 247603 (2015).

    ADS  Google Scholar 

  36. Ivády, V. et al. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide. Phys. Rev. B 92, 115206 (2015).

    ADS  Google Scholar 

  37. Reiserer, A. et al. Robust quantum-network memory using decoherence-protected subspaces of nuclear spins. Phys. Rev. X 6, 021040 (2016).

    Google Scholar 

  38. Kolkowitz, S., Unterreithmeier, Q. P., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).

    ADS  Google Scholar 

  39. Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    ADS  Google Scholar 

  40. Taminiau, T. H., Cramer, J., van der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotech. 9, 171–176 (2014).

    ADS  Google Scholar 

  41. Liu, G.-Q. et al. Single-shot readout of a nuclear spin weakly coupled to a nitrogen-vacancy center at room temperature. Phys. Rev. Lett. 118, 150504 (2017).

    ADS  Google Scholar 

  42. Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9, 139–143 (2013).

    Google Scholar 

  43. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    ADS  Google Scholar 

  44. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    ADS  Google Scholar 

  45. Barclay, P. E., Fu, K.-M. C., Santori, C., Faraon, A. & Beausoleil, R. G. Hybrid nanocavity resonant enhancement of color center emission in diamond. Phys. Rev. X 1, 011007 (2011).

    Google Scholar 

  46. Faraon, A., Santori, C., Huang, Z., Acosta, V. M. & Beausoleil, R. G. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012).

    ADS  Google Scholar 

  47. Aharonovich, I. & Neu, E. Diamond nanophotonics. Adv. Opt. Mater. 2, 911–928 (2014).

    Google Scholar 

  48. Schröder, T. et al. Quantum nanophotonics in diamond. J. Opt. Soc. Am. B 33, B65–B83 (2016).

    Google Scholar 

  49. Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

    ADS  Google Scholar 

  50. Riedel, D. et al. Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).

    Google Scholar 

  51. Dréau, A., Tcheborateva, A., El Mahdaoui, A., Bonato, C. & Hanson, R. Quantum frequency conversion to telecom of single photons from a nitrogen-vacancy center in diamond. Phys. Rev. Appl. 9, 064031 (2018).

    ADS  Google Scholar 

  52. Hepp, C. et al. Electronic structure of the silicon vacancy color center in diamond. Phys. Rev. Lett. 112, 036405 (2014).

    ADS  Google Scholar 

  53. Rogers, L. J. et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat. Commun. 5, 4739 (2014).

    Google Scholar 

  54. Pingault, B. et al. All-optical formation of coherent dark states of silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263601 (2014).

    ADS  Google Scholar 

  55. Rogers, L. J. et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263602 (2014).

    ADS  Google Scholar 

  56. Pingault, B. et al. Coherent control of the silicon-vacancy spin in diamond. Nat. Commun. 8, 15579 (2017).

    ADS  Google Scholar 

  57. Becker, J. N. et al. All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures. Phys. Rev. Lett. 120, 053603 (2018).

    ADS  Google Scholar 

  58. Sukachev, D. D. et al. Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 119, 223602 (2017).

    ADS  Google Scholar 

  59. Rogers, L. J. et al. Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys. Rev. B 89, 235101 (2014).

    ADS  Google Scholar 

  60. Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    ADS  Google Scholar 

  61. Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).

    ADS  Google Scholar 

  62. Siyushev, P. et al. Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B 96, 081201 (2017).

    ADS  Google Scholar 

  63. Green, B. L. et al. Neutral silicon-vacancy center in diamond: spin polarization and lifetimes. Phys. Rev. Lett. 119, 096402 (2017).

    ADS  Google Scholar 

  64. Rose, B. C. et al. Observation of an environmentally insensitive solid state spin defect in diamond. Science 361, 60–63 (2018).

    ADS  Google Scholar 

  65. Tchernij, S. D. et al. Single-photon-emitting optical centers in diamond fabricated upon Sn implantation. ACS Photon. 4, 2580–2586 (2017).

    Google Scholar 

  66. Iwasaki, T. et al. Tin-vacancy quantum emitters in diamond. Phys. Rev. Lett. 119, 253601 (2017).

    ADS  Google Scholar 

  67. Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    ADS  Google Scholar 

  68. Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013).

    Google Scholar 

  69. Falk, A. L. et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys. Rev. Lett. 112, 187601 (2014).

    ADS  Google Scholar 

  70. Whiteley, S. J. et al. Probing spin-phonon interactions in silicon carbide with Gaussian acoustics. Preprint at https://arxiv.org/abs/1804.10996 (2018).

  71. Klimov, P. V., Falk, A. L., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble. Sci. Adv. 1, e1501015 (2015).

    ADS  Google Scholar 

  72. Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2014).

    ADS  Google Scholar 

  73. Simin, D. et al. Locking of electron spin coherence above 20 ms in natural silicon carbide. Phys. Rev. B 95, 161201 (2017).

    ADS  Google Scholar 

  74. Nagy, R. et al. Quantum properties of dichroic silicon vacancies in silicon carbide. Phys. Rev. Appl. 9, 034022 (2018).

    ADS  Google Scholar 

  75. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2014).

    ADS  Google Scholar 

  76. Yang, L.-P. et al. Electron spin decoherence in silicon carbide nuclear spin bath. Phys. Rev. B 90, 241203 (2014).

    ADS  Google Scholar 

  77. Seo, H. et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935 (2016).

    ADS  Google Scholar 

  78. Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).

    Google Scholar 

  79. de las Casas, C. F. et al. Stark tuning and electrical charge state control of single divacancies in silicon carbide. Appl. Phys. Lett. 111, 262403 (2017).

    ADS  Google Scholar 

  80. Radulaski, M. et al. Photonic crystal cavities in cubic (3C) polytype silicon carbide films. Opt. Express 21, 32623–32629 (2013).

    ADS  Google Scholar 

  81. Calusine, G., Politi, A. & Awschalom, D. D. Cavity-enhanced measurements of defect spins in silicon carbide. Phys. Rev. Appl. 6, 014019 (2016).

    ADS  Google Scholar 

  82. Soykal, O., Dev, P. & Economou, S. E. Silicon vacancy center in 4H-SiC: electronic structure and spin-photon interfaces. Phys. Rev. B 93, 081207(R) (2016).

    ADS  Google Scholar 

  83. Kraus, H. et al. Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide. Sci. Rep. 4, 5303 (2014).

    Google Scholar 

  84. Niethammer, M. et al. Vector magnetometry using silicon vacancies in 4H-SiC under ambient conditions. Phys. Rev. Appl. 6, 034001 (2016).

    ADS  Google Scholar 

  85. Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

    ADS  Google Scholar 

  86. Könz, F. et al. Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5. Phys. Rev. B 68, 085109 (2003).

    ADS  Google Scholar 

  87. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    ADS  Google Scholar 

  88. O’Brien, C., Lauk, N., Blum, S., Morigi, G. & Fleischhauer, M. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014).

    ADS  Google Scholar 

  89. Williamson, L. A., Chen, Y.-H. & Longdell, J. J. Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113, 203601 (2014).

    ADS  Google Scholar 

  90. Utikal, T. et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat. Commun. 5, 3627 (2014).

    Google Scholar 

  91. Eichhammer, E., Utikal, T., Götzinger, S. & Sandoghdar, V. Spectroscopic detection of single Pr3+ ions on the 3H41D2 transition. New J. Phys. 17, 083018 (2015).

    ADS  Google Scholar 

  92. Nakamura, I., Yoshihiro, T., Inagawa, H., Fujiyoshi, S. & Matsushita, M. Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K. Sci. Rep. 4, 7364 (2015).

    Google Scholar 

  93. Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3, 1029 (2012).

    Google Scholar 

  94. Siyushev, P. et al. Coherent properties of single rare-earth spin qubits. Nat. Commun. 5, 3895 (2014).

    Google Scholar 

  95. Xia, K. et al. Optical and spin properties of a single praseodymium ion in a crystal. Preprint at http://arxiv.org/abs/1706.08736 (2017).

  96. Fraval, E., Sellars, M. J. & Longdell, J. J. Dynamic decoherence control of a solid-state nuclear-quadrupole qubit. Phys. Rev. Lett. 95, 030506 (2005).

    ADS  Google Scholar 

  97. Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

    ADS  Google Scholar 

  98. Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).

    ADS  MathSciNet  Google Scholar 

  99. Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Preprint at http://arxiv.org/abs/1803.07520 (2018).

  100. Dibos, A., Raha, M., Phenicie, C. & Thompson, J. Isolating and enhancing the emission of single erbium ions using a silicon nanophotonic cavity. Phys. Rev. Lett. 120, 243601 (2018).

    ADS  Google Scholar 

  101. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotech. 9, 986–991 (2014).

    ADS  Google Scholar 

  102. Tosi, G., Mohiyaddin, F. A., Huebl, H. & Morello, A. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si. AIP Adv. 4, 087122 (2014).

    ADS  Google Scholar 

  103. Morse, K. J. et al. A photonic platform for donor spin qubits in silicon. Sci. Adv. 3, e1700930 (2017).

    ADS  Google Scholar 

  104. Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).

    ADS  Google Scholar 

  105. Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

    ADS  Google Scholar 

  106. Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si ‘semiconductor vacuum’. Science 336, 1280–1283 (2012).

    ADS  Google Scholar 

  107. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    ADS  Google Scholar 

  108. Vazirani, U. & Vidick, T. Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014).

    ADS  Google Scholar 

  109. Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  110. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS  Google Scholar 

  111. Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  112. Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    ADS  MathSciNet  Google Scholar 

  113. Yang, S. et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nat. Photon. 10, 507–511 (2016).

    ADS  Google Scholar 

  114. Heshami, K. et al. Raman quantum memory based on an ensemble of nitrogen-vacancy centers coupled to a microcavity. Phys. Rev. A 89, 040301 (2014).

    ADS  Google Scholar 

  115. Poem, E. et al. Broadband noise-free optical quantum memory with neutral nitrogen-vacancy centers in diamond. Phys. Rev. B 91, 205108 (2015).

    ADS  Google Scholar 

  116. Kosaka, H. & Niikura, N. Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett. 114, 053603 (2015).

    ADS  Google Scholar 

  117. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    ADS  Google Scholar 

  118. Nickerson, N. H., Li, Y. & Benjamin, S. C. Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013).

    ADS  Google Scholar 

  119. Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 7, 11526 (2016).

    ADS  Google Scholar 

  120. Cai, J., Retzker, A., Jelezko, F. & Plenio, M. B. A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 9, 168–173 (2013).

    Google Scholar 

  121. Wang, Y. et al. Quantum simulation of helium hydride cation in a solid-state spin register. ACS Nano 9, 7769–7774 (2015).

    Google Scholar 

  122. Kong, F. et al. Direct measurement of topological numbers with spins in diamond. Phys. Rev. Lett. 117, 060503 (2016).

    ADS  Google Scholar 

  123. Le Sage, D. et al. Optical magnetic imaging of living cells. Nature 496, 486–489 (2013).

    ADS  Google Scholar 

  124. Simpson, D. A. et al. Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping. ACS Nano 11, 12077–12086 (2017).

    Google Scholar 

  125. Thiel, L. et al. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nat. Nanotech. 11, 677–681 (2016).

    ADS  Google Scholar 

  126. Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotech. 11, 700–705 (2016).

    ADS  Google Scholar 

  127. Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    ADS  Google Scholar 

  128. Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl Acad. Sci. USA 113, 14133–14138 (2016).

    ADS  Google Scholar 

  129. Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).

    ADS  Google Scholar 

  130. Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  131. Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    ADS  Google Scholar 

  132. Appel, P., Ganzhorn, M., Neu, E. & Maletinsky, P. Nanoscale microwave imaging with a single electron spin in diamond. New J. Phys. 17, 112001 (2015).

    ADS  Google Scholar 

  133. Jakobi, I. et al. Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nat. Nanotech. 12, 67–72 (2016).

    ADS  Google Scholar 

  134. Laraoui, A. et al. High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond. Nat. Commun. 4, 1651 (2013).

    Google Scholar 

  135. Kong, X., Stark, A., Du, J., McGuinness, L. P. & Jelezko, F. Towards chemical structure resolution with nanoscale nuclear magnetic resonance spectroscopy. Phys. Rev. Appl. 4, 024004 (2015).

    ADS  Google Scholar 

  136. Zaiser, S. et al. Enhancing quantum sensing sensitivity by a quantum memory. Nat. Commun. 7, 12279 (2016).

    ADS  Google Scholar 

  137. Pfender, M. et al. Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters. Nat. Commun. 8, 834 (2017).

    ADS  Google Scholar 

  138. Rosskopf, T., Zopes, J., Boss, J. M. & Degen, C. L. A quantum spectrum analyzer enhanced by a nuclear spin memory. npj Quantum Inf. 3, 33 (2017).

    ADS  Google Scholar 

  139. Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).

    ADS  Google Scholar 

  140. Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555, 351–354 (2018).

    ADS  Google Scholar 

  141. Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).

    ADS  Google Scholar 

  142. Schmitt, S. et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 356, 832–837 (2017).

    ADS  Google Scholar 

  143. Astner, T. et al. Coherent coupling of remote spin ensembles via a cavity bus. Phys. Rev. Lett. 118, 140502 (2017).

    ADS  Google Scholar 

  144. Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A. & Maletinsky, P. Strong mechanical driving of a single electron spin. Nat. Phys. 11, 820–824 (2015).

    Google Scholar 

  145. Lee, D., Lee, K. W., Cady, J. V., Ovartchaiyapong, P. & Jayich, A. C. B. Topical review: spins and mechanics in diamond. J. Opt. 19, 033001 (2017).

    ADS  Google Scholar 

  146. Wolfe, C. S. et al. Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet. Phys. Rev. B 89, 180406 (2014).

    ADS  Google Scholar 

  147. Andrich, P. et al. Long-range spin wave mediated control of defect qubits in nanodiamonds. npj Quantum Inf. 3, 28 (2017).

    ADS  Google Scholar 

  148. Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    Google Scholar 

  149. Grote, R. R. et al. Imaging a nitrogen-vacancy center with a diamond immersion metalens. Preprint at http://arxiv.org/abs/1711.00901 (2017).

  150. Steinert, S. et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 1607 (2013).

    Google Scholar 

  151. Fedotov, I. V. et al. Electron spin manipulation and readout through an optical fiber. Sci. Rep. 4, 5362 (2015).

    Google Scholar 

  152. Kehayias, P. et al. Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip. Nat. Commun. 8, 188 (2017).

    ADS  Google Scholar 

  153. van Dam, S. B., Humphreys, P. C., Rozpędek, F., Wehner, S. & Hanson, R. Multiplexed entanglement generation over quantum networks using multi-qubit nodes. Quantum Sci. Technol. 2, 034002 (2017).

    ADS  Google Scholar 

  154. Geng, J. et al. Experimental time-optimal universal control of spin qubits in solids. Phys. Rev. Lett. 117, 170501 (2016).

    ADS  Google Scholar 

  155. Zhou, B. B. et al. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330–334 (2017).

    Google Scholar 

  156. Hirose, M. & Cappellaro, P. Coherent feedback control of a single qubit in diamond. Nature 532, 77–80 (2016).

    ADS  Google Scholar 

  157. Unden, T. et al. Quantum metrology enhanced by repetitive quantum error correction. Phys. Rev. Lett. 116, 230502 (2016).

    ADS  Google Scholar 

  158. Lesik, M. et al. Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample. Appl. Phys. Lett. 104, 113107 (2014).

    ADS  Google Scholar 

  159. Michl, J. et al. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl. Phys. Lett. 104, 102407 (2014).

    ADS  Google Scholar 

  160. Fukui, T. et al. Perfect selective alignment of nitrogen-vacancy centers in diamond. Appl. Phys. Express 7, 055201 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Crook, F. J. Heremans, P. Jerger, K. Miao, T. Taminiau, G. Wolfowicz and T. Zhong for illuminating discussions. D.D.A. and B.B.Z. acknowledge support from the National Science Foundation grant EFMA-164109, the Air Force Office of Scientific Research grants FA9550-14-1-0231 and FA9550-15-1-0029, and the Army Research Office QSEP grant W911NF-15-2-0058. R.H. acknowledges support from the Netherlands Organisation for Scientific Research (NWO) through a VICI grant and the European Research Council (ERC) through a Consolidator Grant. J.W. acknowledges support from ERC grant SMeL, the BW foundation, BMBF grant BrainQSens, and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awschalom, D.D., Hanson, R., Wrachtrup, J. et al. Quantum technologies with optically interfaced solid-state spins. Nature Photon 12, 516–527 (2018). https://doi.org/10.1038/s41566-018-0232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0232-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing