Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles

An Erratum to this article was published on 22 March 2017

Abstract

Chemists generally believe that covalent and ionic bonds form much stronger links between atoms than the van der Waals force does. However, this is not always so. We present cases in which van der Waals dispersive forces introduce new competitive bonding possibilities rather than just modulating traditional bonding scenarios. Although the new possibilities could arise from any soft–soft chemical interaction, we focus on bonding between gold atoms and alkyl or arylsulfur ligands, RS. Consideration of all the interactions at play in sulfur-protected gold surfaces and gold nanoparticles is necessary to understand their structural, chemical and spectroscopic properties. In turn, such knowledge opens pathways to new chemical entities and innovative nanotechnological devices. Such experimentation is complemented by modern theory, and presented here is a broad overview of computational methods appropriate to fields ranging from gas-phase chemistry to device physics and biochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms by which van der Waals dispersion forces can modify chemical bonding.
Figure 2: Hard and soft acids and bases, and ionic, van der Waals and covalent bonding.
Figure 3: Frontier orbital interactions in some standard chemical bonding scenarios.
Figure 4: Diverse bonding motifs are possible when gold surfaces bind organosulfur ligands.
Figure 5: Synthetic pathways to Au(I) thiolates and Au(O) thiyls.

Similar content being viewed by others

References

  1. Dobson, J. F. Beyond pairwise additivity in London dispersion interactions. Int. J. Quantum Chem. 114, 1157–1161 (2014).

    Article  CAS  Google Scholar 

  2. Tsoi, S. et al. Van der Waals screening by single-layer graphene and molybdenum disulfide. ACS Nano 8, 12410–12417 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Schmidbaur, H. & Schier, A. A briefing on aurophilicity. Chem. Soc. Rev. 37, 1931–1951 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Pyykko, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004).

    Article  CAS  Google Scholar 

  5. Liptrot, D. J. & Power, P. P. London dispersion forces in sterically crowded inorganic and organometallic molecules. Nat. Rev. Chem. 1, 0004 (2017).

    Article  CAS  Google Scholar 

  6. Guo, J. D., Liptrot, D. J., Nagase, S. & Power, P. P. The multiple bonding in heavier group 14 element alkene analogues is stabilized mainly by dispersion force effects. Chem. Sci. 6, 6235–6244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schreiner, P. R. et al. Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces. Nature 477, 308–311 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Fokin, A. A. et al. Stable alkanes containing very long carbon–carbon bonds. J. Am. Chem. Soc. 134, 13641–13650 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Grimme, S. & Schreiner, P. R. Steric crowding can stabilize a labile molecule: solving the hexaphenylethane riddle. Angew. Chem. Int. Ed. 50, 12639–12642 (2011).

    Article  CAS  Google Scholar 

  10. Lyngvi, E., Sanhueza, I. A. & Schoenebeck, F. Dispersion makes the difference: bisligated transition states found for the oxidative addition of Pd(Pt Bu3)2 to Ar–OSO2R and dispersion-controlled chemoselectivity in reactions with Pd[P(iPr)(tBu2)]2 . Organometallics 34, 805–812 (2015).

    Article  CAS  Google Scholar 

  11. Wagner, J. P. & Schreiner, P. R. London dispersion decisively contributes to the thermodynamic stability of bulky NHC-coordinated main group compounds. J. Chem. Theory Comput. 12, 231–237 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Hänninen, M. M., Pal, K., Day, B. M., Pugh, T. & Layfield, R. A. A three-coordinate iron–silylene complex stabilized by ligand–ligand dispersion forces. Dalton Trans. 45, 11301–11305 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. Reimers, J. R., Watts, R. O. & Klein, M. L. Intermolecular potential functions and the properties of water. Chem. Phys. 64, 95–114 (1982).

    Article  CAS  Google Scholar 

  14. Kumar, M., Chaudhari, R. V., Subramaniam, B. & Jackson, T. A. Ligand effects on the regioselectivity of rhodium-catalyzed hydroformylation: density functional calculations illuminate the role of long-range noncovalent interactions. Organometallics 33, 4183–4191 (2014).

    Article  CAS  Google Scholar 

  15. Wolters, L. P., Koekkoek, R. & Bickelhaupt, F. M. Role of steric attraction and bite-angle flexibility in metal-mediated C–H bond activation. ACS Catal. 5, 5766–5775 (2015).

    Article  CAS  Google Scholar 

  16. Schweighauser, L., Strauss, M. A., Bellotto, S. & Wegner, H. A. Attraction or repulsion? London dispersion forces control azobenzene switches. Angew. Chem. Int. Ed. 54, 13436–13439 (2015).

    Article  CAS  Google Scholar 

  17. Wagner, C. L. et al. Dispersion-force-assisted disproportionation: a stable two-coordinate copper(II) complex. Angew. Chem. Int. Ed. 55, 10444–10447 (2016).

    Article  CAS  Google Scholar 

  18. Lomas, J. R., Baddeley, C. J., Tikhov, M. S. & Lambert, R. M. Ethyne cyclization to benzene over Cu(110). Langmuir 11, 3048–3053 (1995).

    Article  CAS  Google Scholar 

  19. Bilic, A., Reimers, J. R., Hush, N. S., Hoft, R. C. & Ford, M. J. Adsorption of benzene on copper, silver, and gold surfaces. J. Chem. Theory Comput. 2, 1093–1105 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Reimers, J. R., Li, M., Wan, D., Gould, T. & Ford, M. J. in Noncovalent Interactions in Quantum Chemistry and Physics: Theory and Applications (eds Otero de la Roza, A. & DiLabio, G. ) in press (Elsevier, 2017).

    Google Scholar 

  21. Das, P. K., Samanta, S., McQuarters, A. B., Lehnert, N. & Dey, A. Valence tautomerism in synthetic models of cytochrome P450. Proc. Natl Acad. Sci. USA 113, 6611–6616 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hersleth, H.-P., Ryde, U., Rydberg, P., Gö rbitz, C. H. & Andersson, K. K. Structures of the high-valent metalion haem–oxygen intermediates in peroxidases, oxygenases and catalases. J. Inorg. Biochem. 100, 460–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Reimers, J. R., McKemmish, L., McKenzie, R. H. & Hush, N. S. Bond angle variations in XH3 [X = N, P, As, Sb, Bi]: the critical role of Rydberg orbitals exposed using a diabatic state model. Phys. Chem. Chem. Phys. 17, 24618–24640 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Reimers, J. R., McKemmish, L., McKenzie, R. H. & Hush, N. S. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity. Phys. Chem. Chem. Phys. 17, 24598–25617 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. McKemmish, L. K., McKenzie, R. H., Hush, N. S. & Reimers, J. R. Quantum entanglement between electronic and vibrational degrees of freedom in molecules. J. Chem. Phys. 135, 244110 (2011).

    Article  PubMed  CAS  Google Scholar 

  26. McKemmish, L., McKenzie, R. H., Hush, N. S. & Reimers, J. R. Electron–vibration entanglement in the Born–Oppenheimer description of chemical reactions and spectroscopy. Phys. Chem. Chem. Phys. 17, 24666–24682 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Reimers, J. R., McKemmish, L., McKenzie, R. H. & Hush, N. S. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born–Oppenheimer breakdown corrections. Phys. Chem. Chem. Phys. 17, 24640–24665 (2015).

    Google Scholar 

  28. Reimers, J. R., Ford, M. J., Halder, A., Ulstrup, J. & Hush, N. S. Gold surfaces and nanoparticles are protected by Au(O)-thiyl species and are destroyed when Au(I)-thiolates form. Proc. Natl Acad. Sci. USA 113, E1424–E1433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 801–802 (1994).

  30. Heister, K., Zharnikov, M., Grunze, M. & Johansson, L. S. O. Adsorption of alkanethiols and biphenylthiols on Au and Ag substrates: a high-resolution X-ray photoelectron spectroscopy study. J. Phys. Chem. B 105, 4058–4061 (2001).

    Article  CAS  Google Scholar 

  31. Heister, K., Zharnikov, M., Grunze, M., Johansson, L. S. O. & Ulman, A. Characterization of X-ray induced damage in alkanethiolate monolayers by high-resolution photoelectron spectroscopy. Langmuir 17, 8–11 (2001).

    Article  CAS  Google Scholar 

  32. Tanaka, A., Takeda, Y., Imamura, M. & Sato, S. Dynamic final-state effect on the Au 4f core-level photoemission of dodecanethiolate-passivated Au nanoparticles on graphite substrates. Phys. Rev. B 68, 195415 (2003).

    Article  CAS  Google Scholar 

  33. Corbierre, M. K. & Lennox, R. B. Preparation of thiol-capped gold nanoparticles by chemical reduction of soluble Au(I)-thiolates. Chem. Mater. 17, 5691–5696 (2005).

    Article  CAS  Google Scholar 

  34. Shaporenko, A., Zharnikov, M., Feulner, P. & Menzel, D. Quantitative analysis of temperature effects in radiation damage of thiolate-based self-assembled monolayers. J. Phys. Condens. Matter 18, S1677–S1689 (2006).

    Article  CAS  Google Scholar 

  35. Park, E. D. & Lee, J. S. Effects of pretreatment conditions on CO oxidation over supported Au catalysts. J. Catal. 186, 1–11 (1999).

    Article  CAS  Google Scholar 

  36. Venezia, A. M. et al. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts. J. Phys. Chem. B 109, 2821–2827 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Casaletto, M. P., Longo, A., Martorana, A., Prestianni, A. & Venezia, A. M. XPS study of supported gold catalysts: the role of Au0 and Au+δ species as active sites. Surf. Interface Anal. 38, 215–218 (2006).

    Article  CAS  Google Scholar 

  38. Mikhlin, Y. L., Nasluzov, V. A., Romanchenko, A. S., Shor, A. M. & Pal'yanova, G. A. XPS and DFT studies of the electronic structures of AgAuS and Ag3AuS2 . J. Alloys Compd. 617, 314–321 (2014).

    Article  CAS  Google Scholar 

  39. Liao, L. et al. Structure of chiral Au44(2,4-DMBT)26 nanocluster with an 18-electron shell closure. J. Am. Chem. Soc. 138, 10425–10428 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. McNeillie, A., Brown, D. H., Smith, W. E., Gibson, M. & Watson, L. X-Ray photoelectron spectra of some gold compounds. J. Chem. Soc., Dalton Trans. 767–770 (1980).

  41. Behera, M. & Ram, S. Inquiring the mechanism of formation, encapsulation, and stabilization of gold nanoparticles by poly(vinyl pyrrolidone) molecules in 1-butanol. Appl. Nanosci. 4, 247–254 (2014).

    Article  CAS  Google Scholar 

  42. Senthilnathan, J., Rao, K. S., Lin, W.-H., Ting, J.-M. & Yoshimura, M. Formation of reusable Au-acetonitrile polymers and N-doped graphene catalyst under UV light via submerged liquid plasma process. J. Mater. Chem. A 3, 3035–3043 (2015).

    Article  CAS  Google Scholar 

  43. Zhang, P. & Sham, T. K. X-Ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys. Rev. Lett. 90, 245502 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. de la Llave, E., Clarenc, R., Schiffrin, D. J. & Williams, F. J. Organization of alkane amines on a gold surface: structure, surface dipole, and electron transfer. J. Phys. Chem. C 118, 468–475 (2014).

    Article  CAS  Google Scholar 

  45. Chaudhuri, A. et al. The structure of the Au(111)/methylthiolate interface. New insights from near-edge X-ray absorption spectroscopy and X-ray standing waves. J. Chem. Phys. 130, 124708 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Mikhlin, Y. et al. XAS and XPS examination of the Au–S nanostructures produced via the reduction of aqueous gold(III) by sulfide ions. J. Electron Spectrosc. Relat. Phenom. 177, 24–29 (2010).

    Article  CAS  Google Scholar 

  47. Corthey, G. et al. Synthesis and characterization of gold@gold(I)–thiomalate core@shell nanoparticles. ACS Nano 4, 3413–3421 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Simms, G. A., Padmos, J. D. & Zhang, P. Structural and electronic properties of protein/thiolate-protected gold nanocluster with “staple” motif: a XAS, L-DOS, and XPS study.J. Chem. Phys. 131, 214703 (2009).

    Article  PubMed  CAS  Google Scholar 

  49. Pearson, R. G. Hard and soft acids and bases HSAB. 1. Fundamental principles. J. Chem. Educ. 45, 581–587 (1968).

    Article  CAS  Google Scholar 

  50. Pearson, R. G. Hard and soft acids and bases — the evolution of a chemical concept. Coord. Chem. Rev. 100, 403–425 (1990).

    Article  CAS  Google Scholar 

  51. Ayers, P. W., Parr, R. G. & Pearson, R. G. Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J. Chem. Phys. 124, 194107 (2006).

    Article  PubMed  CAS  Google Scholar 

  52. Selinger, B. Chemistry in the Marketplace (Allen & Unwin, 1999).

    Google Scholar 

  53. Barton, E. J. et al. ExoMol molecular line lists V: the ro-vibrational spectra of NaCl and KCl. Mon. Not. R. Astron. Soc. 442, 1821–1829 (2014).

    Article  CAS  Google Scholar 

  54. Reckien, W., Eggers, M. & Bredow, T. Theoretical study of the adsorption of benzene on coinage metals. Beilstein J. Org. Chem. 10, 1775–1784 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Liu, W. et al. Quantitative prediction of molecular adsorption: structure and binding of benzene on coinage metals. Phys. Rev. Lett. 115, 036104 (2015).

    Article  PubMed  CAS  Google Scholar 

  56. Hohman, J. N. et al. Exchange reactions between alkanethiolates and alkaneselenols on Au{111}. J. Am. Chem. Soc. 136, 8110–8121 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Schmøkel, M. S. et al. Testing the concept of hypervalency: charge density analysis of K2SO4 . Inorg. Chem. 51, 8607–8616 (2012).

    Article  PubMed  CAS  Google Scholar 

  58. Tang, Q. & Jiang, D.-E. Insights into the PhC≡C/Au interface. J. Phys. Chem. C 119, 10804–10810 (2014).

    Article  CAS  Google Scholar 

  59. Zaba, T. et al. Formation of highly ordered self-assembled monolayers of alkynes on Au(111) substrate. J. Am. Chem. Soc. 136, 11918–11921 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Li, Y., Silverton, L. C., Haasch, R. & Tong, Y. Y. Alkanetelluroxide-protected gold nanoparticles. Langmuir 24, 7048–7053 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Kurashige, W. et al. Au25 clusters containing unoxidized tellurolates in the ligand shell. J. Phys. Chem. Lett. 5, 2072–2076 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Reimers, J. R., Wang, Y., Cankurtaran, B. O. & Ford, M. J. Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles. J. Am. Chem. Soc. 132, 8378–8384 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, J. & Ulstrup, J. Oxygen-free in situ scanning tunnelling microscopy. J. Electroanal. Chem. 599, 213–220 (2007).

    Article  CAS  Google Scholar 

  64. McAdon, M. H. & Goddard, W. A. Charge density waves, spin density waves, and Peierls distortions in one-dimensional metals. 1. Hartree–Fock studies of Cu, Ag, Au, Li, and Na. J. Chem. Phys. 88, 277–302 (1988).

    Article  CAS  Google Scholar 

  65. McAdon, M. H. & Goddard, W. A. Charge density waves, spin density waves, and Peierls distortions in one-dimensional metals. 2. Generalized valence bond studies of copper, silver, gold, lithium and sodium. J. Phys. Chem. 92, 1352–1365 (1988).

    Article  CAS  Google Scholar 

  66. Fang, J. et al. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord. Chem. Rev. 322, 1–29 (2016).

    Article  CAS  Google Scholar 

  67. De, M., Ghosh, P. S. & Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 20, 4225–4241 (2008).

    Article  CAS  Google Scholar 

  68. Sapsford, K. E. et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 113, 1904–2074 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Saha, K., Agasti, S. S., Kim, C., Li, X. & Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, L. & Wang, E. Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9, 132–157 (2014).

    Article  CAS  Google Scholar 

  71. Muthu, M. S., Agrawal, P. & Singh, S. Theranostic nanomedicine of gold nanoclusters: an emerging platform for cancer diagnosis and therapy. Nanomedicine 11, 327–330 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Whitesides, G. M. & Laibinis, P. E. Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface. Langmuir 6, 87–96 (1990).

    Article  CAS  Google Scholar 

  73. Schmidbaur, H. Ludwig Mond Lecture. High-carat gold compounds. Chem. Soc. Rev. 24, 391–400 (1995).

    Article  CAS  Google Scholar 

  74. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Hutchings, G. J., Brust, M. & Schmidbaur, H. Gold — an introductory perspective. Chem. Soc. Rev. 37, 1759–1765 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Skrabalak, S. E. et al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587–1595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sardar, R., Funston, A. M., Mulvaney, P. & Murray, R. W. Gold nanoparticles: past, present, and future. Langmuir 25, 13840–13851 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, P., Li, N. & Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257, 638–665 (2013).

    Article  CAS  Google Scholar 

  79. Kurashige, W., Niihori, Y., Sharma, S. & Negishi, Y. Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev. 320321, 238–250 (2016).

    Article  CAS  Google Scholar 

  80. Goswami, N., Yao, Q., Chen, T. & Xie, J. Mechanistic exploration and controlled synthesis of precise thiolate–gold nanoclusters. Coord. Chem. Rev. 329, 1–15 (2016).

    Article  CAS  Google Scholar 

  81. Pensa, E. et al. The chemistry of the sulfur–gold interface: in search of a unified model. Acc. Chem. Res. 45, 1183–1192 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Maksymovych, P., Sorescu, D. C. & Yates, J. T. Jr. Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface. Phys. Rev. Lett. 97, 146103 (2006).

    Article  PubMed  CAS  Google Scholar 

  83. Jiang, D.-E., Tiago, M. L., Luo, W. D. & Dai, S. The “staple” motif: a key to stability of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 130, 2777–2779 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, Y. et al. Chain-branching control of the atomic structure of alkanethiol-based gold–sulfur interfaces. J. Am. Chem. Soc. 133, 14856–14859 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Yan, J. et al. Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on Au(111). J. Am. Chem. Soc. 136, 17087–17094 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Ouyang, R. et al. Intermixed adatom and surface bound adsorbates in regular self-assembled monolayers of racemic 2-butanethiol on Au(111). ChemPhysChem 16, 928–932 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Grumelli, D., Maza, F. L., Kern, K., Salvarezza, R. C. & Carro, P. Surface structure and chemistry of alkanethiols on Au(100)-(1×1) substrates. J. Phys. Chem. C 120, 291–296 (2016).

    Article  CAS  Google Scholar 

  88. Chadha, R. K., Kumar, R. & Tuck, D. G. The direct electrochemical synthesis of thiolato complexes of copper, silver, and gold; the molecular structure of [Cu(SC6H4CH3-o)(1,10-phenanthroline)]2·CH3CN. Can. J. Chem. 65, 1336–1342 (1987).

    Article  CAS  Google Scholar 

  89. Wang, Y., Hush, N. S. & Reimers, J. R. Understanding the chemisorption of 2-methyl-2-propanethiol on Au(111). J. Phys. Chem. C 111, 10878–10885 (2007).

    Article  CAS  Google Scholar 

  90. Bandyopadhyay, S., Chattopadhyay, S. & Dey, A. The protonation state of thiols in self-assembled monolayers on roughened Ag/Au surfaces and nanoparticles. Phys. Chem. Chem. Phys. 17, 24866–24873 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Brust, M., Fink, J., Bethell, D., Schiffrin, D. J. & Kiely, C. Synthesis and reactions of functionalized gold nanoparticles. J. Chem. Soc. Chem. Commun. 1655–1656 (1995).

  92. Romero, E. A., Peltier, J. L., Jazzar, R. & Bertrand, G. Catalyst-free dehydrocoupling of amines, alcohols, and thiols with pinacol borane and 9-borabicyclononane (9-BBN). Chem. Commun. 52, 10563–10565 (2016).

    Article  CAS  Google Scholar 

  93. Civit, M. G. et al. Ynones merge activation/conjugate addition of chalcogenoborates ArE-Bpin (E = Se, S). Adv. Synth. Catal. 357, 3098–3103 (2015).

    Article  CAS  Google Scholar 

  94. Solé, C. & Fernández, E. Alkoxide activation of aminoboranes towards selective amination. Angew. Chem. Int. Ed. 52, 11351–11355 (2013).

    Article  CAS  Google Scholar 

  95. Davis, R. E. & Gottbrath, J. A. Boron hydrides. V. Methanolysis sodium borohydride. J. Am. Chem. Soc. 84, 895–898 (1962).

    Article  CAS  Google Scholar 

  96. Negishi, Y. & Tsukuda, T. One-pot preparation of subnanometer-sized gold clusters via reduction and stabilization by meso-2,3-dimercaptosuccinic acid. J. Am. Chem. Soc. 125, 4046–4047 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Schaaff, T. G., Knight, G., Shafigullin, M. N., Borkman, R. F. & Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B 102, 10643–10646 (1998).

    Article  CAS  Google Scholar 

  98. Goulet, P. J. G. & Lennox, R. B. New insights into Brust–Schiffrin metal nanoparticle synthesis. J. Am. Chem. Soc. 132, 9582–9584 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Li, Y., Zaluzhna, O. & Tong, Y. J. Critical role of water and the structure of inverse micelles in the Brust–Schiffrin synthesis of metal nanoparticles. Langmuir 27, 7366–7370 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Perala, S. R. K. & Kumar, S. On the mechanism of metal nanoparticle synthesis in the Brust–Schiffrin method. Langmuir 29, 9863–9873 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Yu, C. et al. Investigation on the mechanism of the synthesis of gold(I) thiolate complexes by NMR. J. Phys. Chem. C 118, 10434–10440 (2014).

    Article  CAS  Google Scholar 

  102. Uehara, A. et al. Electrochemical insight into the Brust–Schiffrin synthesis of Au nanoparticles. J. Am. Chem. Soc. 137, 15135–15144 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Marbella, L. E. et al. Description and role of bimetallic prenucleation species in the formation of small nanoparticle alloys. J. Am. Chem. Soc. 137, 15852–15858 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Zhu, L. et al. New insight into intermediate precursors of Brust–Schiffrin gold nanoparticles synthesis. J. Phys. Chem. C 117, 11399–11404 (2013).

    Article  CAS  Google Scholar 

  105. Graham, T. R., Renslow, R., Govind, N. & Saunders, S. R. Precursor ion–ion aggregation in the Brust–Schiffrin synthesis of alkanethiol nanoparticles. J. Phys. Chem. C 120, 19837–19847 (2016).

    Article  CAS  Google Scholar 

  106. Zaluzhna, O., Li, Y., Zangmeister, C., Allison, T. C. & Tong, Y. J. Mechanistic insights on one-phase versus two-phase Brust–Schiffrin method synthesis of Au nanoparticles with dioctyl-diselenides. Chem. Commun. 48, 362–364 (2012).

    Article  CAS  Google Scholar 

  107. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  108. Otero de la Roza, A. & DiLabio, G. (eds) Noncovalent Interactions in Quantum Chemistry and Physics: Theory and Applications in press (Elsevier, 2017).

    Google Scholar 

  109. Mäkinen, V., Koskinen, P. & Häkkinen, H. Modeling thiolate-protected gold clusters with density-functional tight-binding. Eur. Phys. J. D 67, 38 (2013).

    Article  CAS  Google Scholar 

  110. Perdew, J. P., Burke, W. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Bilic, A., Reimers, J. R., Hush, N. S. & Hafner, J. Adsorption of ammonia on the gold (111) surface. J. Chem. Phys. 116, 8981–8987 (2002).

    Article  CAS  Google Scholar 

  112. Wang, Y., Hush, N. S. & Reimers, J. R. Formation of gold-methanethiyl self-assembled monolayers. J. Am. Chem. Soc. 129, 14532–14533 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Cafe, P. F. et al. Chemisorbed and physisorbed structures for 1,10-phenanthroline and dipyrido[3,2-a:2ʹ,3ʹ-c]phenazine on Au(111). J. Phys. Chem. C 111, 17285–17296 (2007).

    Article  CAS  Google Scholar 

  114. Towler, M. D. in Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology (ed. Reimers, J. R. ) 119–166 (Wiley, 2011).

    Google Scholar 

  115. Al-Hamdani, Y. S., Ma, M., Alfè, D., von Lilienfeld, O. A. & Michaelides, A. Communication: water on hexagonal boron nitride from diffusion Monte Carlo. J. Chem. Phys. 142, 181101 (2015).

    Article  PubMed  CAS  Google Scholar 

  116. Booth, G. H., Grüneis, A., Kresse, G. & Alavi, A. Towards an exact description of electronic wavefunctions in real solids. Nature 493, 365–370 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Booth, G. H., Thom, A. J. W. & Alavi, A. Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. J. Chem. Phys. 131, 054106 (2009).

    Article  PubMed  CAS  Google Scholar 

  118. Dubecký, M., Mitas, L. & Jurecˇka, P. Noncovalent interactions by quantum Monte Carlo. Chem. Rev. 116, 5188–5215 (2016).

    Article  PubMed  CAS  Google Scholar 

  119. Grüneis, A. A coupled cluster and Møller–Plesset perturbation theory study of the pressure induced phase transition in the LiH crystal. J. Chem. Phys. 143, 102817 (2015).

    Article  PubMed  CAS  Google Scholar 

  120. Voloshina, E. & Paulus, B. First multireference correlation treatment of bulk metals. J. Chem. Theory Comput. 10, 1698–1706 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Olsen, T. & Thygesen, K. S. Beyond the random phase approximation: improved description of short-range correlation by a renormalized adiabatic local density approximation. Phys. Rev. B 88, 115131 (2013).

    Article  CAS  Google Scholar 

  122. Gould, T. Communication: beyond the random phase approximation on the cheap: improved correlation energies with the efficient “radial exchange hole” kernel. J. Chem. Phys. 137, 111101 (2012).

    Article  PubMed  CAS  Google Scholar 

  123. Goerigk, L. & Grimme, S. Double-hybrid density functionals. WIREs Comput. Mol. Sci. 4, 576–600 (2014).

    Article  CAS  Google Scholar 

  124. Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124, 034108 (2006).

    Article  PubMed  CAS  Google Scholar 

  126. Goerigk, L. & Grimme, S. Efficient and accurate double-hybrid-meta-GGA density functionals — evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 7, 291–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    Article  CAS  Google Scholar 

  129. Cai, Z.-L., Crossley, M. J., Reimers, J. R., Kobayashi, R. & Amos, R. D. Density-functional theory for charge-transfer: the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J. Phys. Chem. B 110, 15624–15632 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  131. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  CAS  Google Scholar 

  133. Tkatchenko, A., Distasio, R. A., Car, R. & Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402 (2012).

    Article  PubMed  CAS  Google Scholar 

  134. Ambrosetti, A., Reilly, A. M., Distasio Jr, R. A. & Tkatchenko, A. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140, 18a508 (2014).

    Article  PubMed  CAS  Google Scholar 

  135. Christian, M. S., Otero-de-la-Roza, A. & Johnson, E. R. Surface adsorption from the exchange–hole dipole moment dispersion model. J. Chem. Theory Comput. 12, 3305–3315 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Vydrov, O. A. & Van Voorhis, T. Nonlocal van der Waals density functional: the simpler the better. J. Chem. Phys. 133, 244103 (2010).

    Article  PubMed  CAS  Google Scholar 

  137. Dion, M., Rydberg, H., Schrö der, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401–246401 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).

    Article  CAS  Google Scholar 

  139. Erhard, J., Bleiziffer, P. & Görling, A. Power series approximation for the correlation kernel leading to Kohn–Sham methods combining accuracy, computational efficiency, and general applicability. Phys. Rev. Lett. 117, 143002 (2016).

    Article  PubMed  Google Scholar 

  140. Eshuis, H., Bates, J. E. & Furche, F. Electron correlation methods based on the random phase approximation. Theor. Chem. Acc. 131, 1084 (2012).

    Article  CAS  Google Scholar 

  141. Gillan, M. J., Alfè, D., Bygrave, P. J., Taylor, C. R. & Manby, F. R. Energy benchmarks for water clusters and ice structures from an embedded many-body expansion. J. Chem. Phys. 139, 114101 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Paulus, B. The method of increments — a wavefunction-based ab initio correlation method for solids. Phys. Rep. 428, 1–52 (2006).

    Article  CAS  Google Scholar 

  143. Muller, C. & Paulus, B. Wavefunction-based electron correlation methods for solids. Phys. Chem. Chem. Phys. 14, 7605–7614 (2012).

    Article  PubMed  CAS  Google Scholar 

  144. Stoll, H., Paulus, B. & Fulde, P. An incremental coupled-cluster approach to metallic lithium. Chem. Phys. Lett. 469, 90–93 (2009).

    Article  CAS  Google Scholar 

  145. de Lara-Castells, M. P., Mitrushchenkov, A. O. & Stoll, H. Combining density functional and incremental post-Hartree–Fock approaches for van der Waals dominated adsorbate–surface interactions: Ag2/graphene. J. Chem. Phys. 143, 102804 (2015).

    Article  PubMed  CAS  Google Scholar 

  146. de Lara-Castells, M. P. et al. A combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of 4He nanodroplets on surfaces: 4He/graphene. J. Chem. Phys. 141, 151102 (2014).

    Article  PubMed  CAS  Google Scholar 

  147. Rolik, Z., Szegedy, L., Ladjánszki, I., Ladóczki, B. & Kállay, M. An efficient linear-scaling CCSD(T) method based on local natural orbitals. J. Chem. Phys. 139, 094105 (2013).

    Article  PubMed  CAS  Google Scholar 

  148. Kruse, H. & Grimme, S. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree–Fock and density functional theory calculations for large systems. J. Chem. Phys. 136, 154101 (2012).

    Article  PubMed  CAS  Google Scholar 

  149. Goerigk, L. & Reimers, J. R. Efficient methods for the quantum chemical treatment of protein structures: the effects of London-dispersion and basis-set incompleteness on peptide and water-cluster geometries. J. Chem. Theory Comput. 9, 3240–3251 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Fedorov, D. G., Nagata, T. & Kitaura, K. Exploring chemistry with the fragment molecular orbital method. Phys. Chem. Chem. Phys. 14, 7562–7577 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Canfield, P., Dahlbom, M. G., Reimers, J. R. & Hush, N. S. Density-functional geometry optimization of the 150000-atom photosystem-I trimer. J. Chem. Phys. 124, 024301 (2006).

    Article  PubMed  CAS  Google Scholar 

  152. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Floris, F. M., Tomasi, J. & Pascual Ahuir, J. L. Dispersion and repulsion contributions to the solvation energy: refinements to a simple computational model in the continuum approximation. J. Computat. Chem. 12, 784–791 (1991).

    Article  CAS  Google Scholar 

  154. Reimers, J. R. et al. From chaos to order: chain-length dependence of the free energy of formation of tetraalkylporphyrin self-assembled monolayer polymorphs J. Phys. Chem. C 120, 1739–1748 (2016).

    Article  CAS  Google Scholar 

  155. Reimers, J. R. et al. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers. Proc. Natl Acad. Sci. USA 112, E6101–E6110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Goerigk, L. & Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 13, 6670–6688 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Fajín, J. L. C., Teixeira, F., Gomes, J. R. B. & Cordeiro, M. N. D. S. Effect of van der Waals interactions in the DFT description of self-assembled monolayers of thiols on gold. Theor. Chem. Acc. 134, 67 (2015).

    Article  CAS  Google Scholar 

  158. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Voloshina, E. & Dedkov, Y. S. Graphene on metallic surfaces: problems and perspectives. Phys. Chem. Chem. Phys. 14, 13502–13514 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Gao, W. & Tkatchenko, A. Sliding mechanisms in multilayered hexagonal boron nitride and graphene: The effects of directionality, thickness, and sliding constraints. Phys. Rev. Lett. 114, 096101 (2015).

    Article  PubMed  CAS  Google Scholar 

  161. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1. 1 Å resolution. Science 318, 430–433 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the Australian Research Council Discovery Projects grant DP160101301, and computational support from National Computational Infrastructure (d63 and no2) and INTERSECT (r88 and sb4) are gratefully acknowledged. The authors also acknowledge helpful discussions with J. Zhang and Q. Chi, Technical University of Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Reimers.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimers, J., Ford, M., Marcuccio, S. et al. Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nat Rev Chem 1, 0017 (2017). https://doi.org/10.1038/s41570-017-0017

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0017

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing