Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation

Abstract

Cyclin D3 plays a critical role in maturation of precursor T cells and their levels are tightly regulated during this process. Alteration of cyclin D3 levels has been proposed to be important in the development of different human cancers, including malignancies of the lymphoid system. Thus, we have analysed the mechanisms involved in the regulation of cyclin D3 levels. Our results indicate that cyclin D3 is degraded via proteasome and that Thr-283 is essential for its degradation. Wild-type cyclin D3 but not the Thr-283A mutant accumulated ubiquitylated forms after treatment with proteasome inhibitors. We also observed that different type of stresses promote the Thr-283-dependent in vivo degradation of cyclin D3. The analysis of the kinases involved in Thr-283 phosphorylation indicates that all the members of the p38SAPK family of serine–threonine kinases are able to phosphorylate cyclin D3 at this specific site. Moreover, we found that the overexpression of p38αSAPK2 induce the decrease of cyclin D3 in vivo. These results indicate that p38SAPK might be involved in the regulation of cyclin D3 levels and suggest that this mechanism is involved in the maturation of precursor T-cells. Alterations of this mechanism might be important for oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bagui TK, Mohapatra S, Haura E and Pledger WJ . (2003). Mol. Cell. Biol., 23, 7285–7290.

  • Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O, Appella E and Fornace Jr AJ . (2001). Nature, 411, 102–107.

  • Buschges R, Weber RG, Actor B, Lichter P, Collins VP and Reifenberger G . (1999). Brain Pathol., 9, 435–442.

  • Casanovas O, Miro F, Estanyol JM, Itarte E, Agell N and Bachs O . (2000). J. Biol. Chem., 275, 35091–35097.

  • Chen Q, Lin J, Jinno S and Okayama H . (2003). Oncogene, 22, 992–1001.

  • Ciemerych MA, Kenney AM, Sicinska E, Kalaszczynska I, Bronson RT, Rowitch DH, Gardner H and Sicinski P . (2002). Genes Dev., 16, 3277–3289.

  • Diehl JA, Cheng M, Roussel MF and Sherr CJ . (1998). Genes Dev., 12, 3499–3511.

  • Diehl NL, Enslen H, Fortner KA, Merritt C, Stetson N, Charland C, Flavell RA, Davis RJ and Rinc inverted question mM. (2000). J. Exp. Med., 191, 321–334.

  • Fantl V, Stamp G, Andrews A, Rosewell I and Dickson C . (1995). Genes Dev., 9, 2364–2372.

  • Filipits M, Jaeger U, Pohl G, Stranzl T, Simonitsch I, Kaider A, Skrabs C and Pirker R . (2002). Clin. Cancer Res., 8, 729–733.

  • Florenes VA, Faye RS, Maelandsmo GM, Nesland JM and Holm R . (2000). Clin. Cancer Res., 6, 3614–3620.

  • Graña X and Reddy PE . (1995). Oncogene, 11, 211–219.

  • Guan KL and Dixon JE . (1991). Anal. Biochem., 192, 262–267.

  • Gutzkow KB, Lahne HU, Naderi S, Torgersen KM, Skalhegg B, Koketsu M, Uehara Y and Blomhoff HK . (2003). Cell Signal., 15, 871–881.

  • Hedberg Y, Roos G, Ljungberg B and Landberg G . (2002). Acta Oncol., 41, 175–181.

  • Hu X, Bryington M, Fisher AB, Liang X, Zhang X, Cui D, Datta I and Zuckerman KS . (2002). J. Biol. Chem., 277, 16528–16537.

  • Inaba T, Matsushime H, Valentine M, Roussel MF, Sherr CJ and Look AT . (1992). Genomics, 13, 565–574.

  • Ito Y, Takeda T, Wakasa K, Tsujimoto M and Matsuura N . (2001). Anticancer Res., 21, 1043–1048.

  • Iyoda K, Sasaki Y, Horimoto M, Toyama T, Yakushijin T, Sakakibara M, Takehara T, Fujimoto J, Hori M, Wands JR and Hayashi N . (2003). Cancer, 97, 3017–3026.

  • Jaumot M, Estanyol JM, Serratosa J, Agell N and Bachs O . (1999). Hepatology, 29, 385–395.

  • Kumar S, Boehm J and Lee JC . (2003). Nat. Rev. Drug Discov., 2, 717–726.

  • Ma Y, Croxton R, Moorer RLJ and Cress WD . (2002). Arch. Biochem. Biophys., 399, 212–224.

  • Ma Y, Yuan J, Huang M, Jove R and Cress WD . (2003). J. Biol. Chem., 278, 16770–16776.

  • Matsushime H, Roussel MF and Sherr CJ . (1991). Cold Spring Harb. Symp. Quant. Biol., 56, 69–74.

  • Mayol X, Garriga J and Grana X . (1995). Oncogene, 11, 801–808.

  • Morgan DO . (1997). Annu. Rev. Cell Dev. Biol., 13, 261–291.

  • Morin CI and Huot J . (2004). Cancer Res., 64, 1893–1898.

  • Neet K and Hunter T . (1995). Mol. Cell. Biol., 15, 4908–4920.

  • Olson JM and Hallahan AR . (2004). Trends Mol. Med., 10, 125–129.

  • Pirkmaier A, Dow R, Ganiatsas S, Waring P, Warren K, Thompson A, Hendley J and Germain D . (2003). Oncogene, 22, 4425–4433.

  • Rickheim DG, Nelsen CJ, Fassett JT, Timchenko NA, Hansen LK and Albrecht JH . (2002). Hepatology, 36, 30–38.

  • Sebzda E, Mariathasan S, Ohteki T, Jones R, Bachmann MF and Ohashi PS . (1999). Annu. Rev. Immunol., 17, 829–874.

  • Sen J, Kapeller R, Fragoso R, Sen R, Zon LI and Burakoff SJ . (1996). J. Immunol., 156, 4535–4538.

  • Shaughnessy Jr J, Gabrea A, Qi Y, Brents L, Zhan F, Tian E, Sawyer J, Barlogie B, Bergsagel PL and Kuehl M . (2001). Blood, 98, 217–223.

  • Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levin SD, Geng Y, von Boehmer H and Sicinski P . (2003). Cancer Cell, 4, 451–461.

  • Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, Robker RL, Richards JS, McGinnis LK, Biggers JD, Eppig JJ, Bronson RT, Elledge SJ and Weinberg RA . (1996). Nature, 384, 470–474.

  • Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ and Weinberg RA . (1995). Cell, 82, 621–630.

  • Sonoki T, Harder L, Horsman DE, Karran L, Taniguchi I, Willis TG, Gesk S, Steinemann D, Zucca E, Schlegelberger B, Sole F, Mungall AJ, Gascoyne RD, Siebert R and Dyer MJ . (2001). Blood, 98, 2837–2844.

  • Tao GZ, Rott LS, Lowe AW and Omary MB . (2002). J. Biol. Chem., 277, 19295–19303.

  • Wada T and Penninger JM . (2004). Oncogene, 23, 2838–2849.

  • Watanabe G, Albanese C, Lee RJ, Reutens A, Vairo G, Henglein B and Pestell RG . (1998). Mol. Cell. Biol., 18, 3212–3222.

  • Weinberg RA . (1995). Cell, 81, 323–330.

  • Xiao ZX, Ginsberg D, Ewen M and Livingston DM . (1996). Proc. Natl. Acad. Sci. USA, 93, 4633–4637.

  • Xiong Y, Menninger J, Beach D and Ward DC . (1992). Genomics, 13, 575–584.

Download references

Acknowledgements

We thank René H Medema from the Netherlands Cancer Institute, Amsterdam, for kindly providing the Jurkat-D3II cell line. This work was supported by Grants, SAF 2000-0052, SAF2002-00452, and SAF2003-08339 from the Ministerio de Ciencia y Tecnología from Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Bachs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casanovas, O., Jaumot, M., Paules, AB. et al. P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation. Oncogene 23, 7537–7544 (2004). https://doi.org/10.1038/sj.onc.1208040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208040

Keywords

This article is cited by

Search

Quick links