Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of Whole-body Irradiation on the Uptake of Sulphur-35 as Sodium Sulphate into Rat Brain Sulphatides

Abstract

SPLEEN and thymus have been found to exhibit a biochemical lesion; namely, uncoupling after they have been exposed in vivo to sub-lethal doses of ionizing radiation1–5. Hall et al.6 have shown that the rate of synthesis of ATP in liver mitochondria was decreased by 20 per cent after irradiation for 1 h and remained at this lower level for 12 h. Florsheim et al.7 have shown that in vivo irradiation with 500–800 r. of X-rays did not impair the ability of adult mouse brain to metabolize oxygen. Whole-body irradiation increases plasma phospholipids8 and increases the total mitochondria phospholipids, especially the phosphatidyl glycerol fraction9. Kennedy10 and Garbus et al.11 have demonstrated that synthesis of phospholipids occurs in isolated mitochondria and requires the maintenance of oxidative phosphorylation or the addition of ATP. The incorporation of 35S-sulphate into rat brain sulphatides has been investigated12. The concentration of sulphatides–sulphur in brain is a function of age and the incorporation of the isotope into the sulphalipid takes place only in the young animal12–14. The synthesis of sulphalipids requires ATP16. With these observations in mind, experiments were undertaken to determine the effect of whole-body X-irradiation on the uptake of 35S-sulphate into rat brain sulphatides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maxwell, E., and Ashwell, G., Arch. Biochem. Biophys., 43, 389 (1953).

    Article  CAS  PubMed  Google Scholar 

  2. Ord, M. G., and Stocken, L. A., Brit. J. Radiol., 28, 279 (1955).

    Article  CAS  PubMed  Google Scholar 

  3. van Bekkum, D. W., Ionizing Radiations and Cell Metabolism, Ciba Found. Symp., 77 (Little, Brown and Co., Boston, 1956).

    Google Scholar 

  4. van Bekkum, D. W., Biochim. Biophys. Acta, 25, 487 (1957).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Scaife, J. F., and Hill, B., Canad. J. Biochem. and Physiol., 40, 1025 (1962).

    Article  CAS  Google Scholar 

  6. Hall, J. C., Goldstein, A. L., and Sonnenblick, B. P., J. Biol. Chem., 238, 1137 (1963).

    CAS  PubMed  Google Scholar 

  7. Florsheim, W., Doernbach, C., and Morton, M. E., Proc. Soc. Exp. Biol. and Med., 81, 121 (1952).

    Article  CAS  Google Scholar 

  8. Entenman, C., Neve, R. A., Supplee, H., and Olmsted, C. A., Arch. Biochem. Biophys., 59, 105 (1955).

    Article  Google Scholar 

  9. Schwarz, H. P., Dreisbach, L., and Kleschick, A., Arch. Biochem. Biophys., 101, 103 (1963).

    Article  CAS  PubMed  Google Scholar 

  10. Kennedy, E. P., J. Biol. Chem., 201, 399 (1953).

    CAS  PubMed  Google Scholar 

  11. Garbus, J., DeLuca, H. F., Loomans, M. E., and Strong, F. M., J. Biol. Chem., 238, 59 (1963).

    CAS  PubMed  Google Scholar 

  12. Bakke, J. E., and Cornatzer, W. E., J. Biol. Chem., 236, 653 (1963).

    Google Scholar 

  13. Moser, H. W., and Karnovsky, M. L., J. Biol. Chem., 234, 1990 (1959).

    CAS  PubMed  Google Scholar 

  14. Davison, A. N., and Gregson, N. A., Biochem. J., 85, 558 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldberg, I. H., J. Lipid Res., 2, 103 (1961).

    CAS  PubMed  Google Scholar 

  16. Gershon-Cohen, J., Hermel, M. B., and Griffith, jun., J. Q., Radiology, 58, 383 (1952).

    Article  CAS  PubMed  Google Scholar 

  17. Folch, J., Lees, M., and Sloane Stanley, G. H., J. Biol. Chem., 226, 497 (1957).

    CAS  PubMed  Google Scholar 

  18. Folch, J., Lees, M., Meath, J. A., and LeBaron, F. N., J. Biol. Chem., 191, 833 (1951).

    CAS  PubMed  Google Scholar 

  19. Folch, J., Lees, M., and Sloane Stanley, G. H., J. Biol. Chem., 226, 497 (1957).

    CAS  PubMed  Google Scholar 

  20. Chambers, E. G., Statistical Calculation for Beginners, second ed. (Camb. Univ. Press, 1952).

    MATH  Google Scholar 

  21. Lovtrup, S., J. Neuro. Chem., 10, 471 (1963).

    Google Scholar 

  22. Glende, E. A., and Cornatzer, W. E., J. Pharm. and Exp. Therap., 139, 377 (1963).

    CAS  Google Scholar 

  23. Burton, R. M., Sodd, M. A., and Brady, R. O., J. Biol. Chem., 233, 1053 (1958).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CORNATZER, W., CHALLY, C. Effect of Whole-body Irradiation on the Uptake of Sulphur-35 as Sodium Sulphate into Rat Brain Sulphatides. Nature 202, 1224–1225 (1964). https://doi.org/10.1038/2021224a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/2021224a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing