Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct Determination of Threshold Energies for the Reactions of Hydrogen Atoms with N2O and with CO2

Abstract

IT has been realized for some time that hydrogen atoms produced by photolysis of the hydrogen halides or of certain other hydrides possess kinetic energy in excess of that corresponding to thermal equilibrium1–5. This arises because the energy of the quantum absorbed is larger than the minimum required to disrupt the molecule into stationary atoms. For example, the dissociation energy of HI is 296 kJ moles−1 (ref. 6) and its first absorption maximum occurs at 220 nm7, corresponding to an energy of 539 kJ moles−1. As a result of conservation of momentum, most of the excess energy appears as translational energy of the hydrogen atom. Such hydrogen atoms are often described as “hot” and their energy is manifested in enhanced reactivity. Their reactions with HI1–3, H2S4, halogens1–4, D2 and several deuterated hydrocarbons (or the corresponding reactions of D or T with H2 or hydrocarbons)8–13 have been demonstrated, and in some cases the variation of reaction probability with wavelength of photolysis has been measured10–12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ogg, R. A., and Williams, jun., R. R., J. Chem. Phys., 13, 586 (1945).

    Article  ADS  CAS  Google Scholar 

  2. Williams, jun., R. R., and Ogg, R. A., J. Chem. Phys., 15, 691 (1947).

    Article  ADS  CAS  Google Scholar 

  3. Schwarz, H. A., Williams, jun., R. R., and Hamill, W. H., J. Amer. Chem. Soc., 74, 6007 (1952).

    Article  CAS  Google Scholar 

  4. Darwent, B. de B., Wadlinger, R. L., and Allard, M. J., J. Phys. Chem., 71, 2346 (1967).

    Article  CAS  Google Scholar 

  5. Gann, R. G., and Dubrin, J., J. Chem. Phys., 47, 1867 (1967).

    Article  ADS  CAS  Google Scholar 

  6. Wagman, D. D., Evans, W. H., Halow, I., Parker, V. B., Bailey, S. M., and Schumm, R. H., NBS Tech. Note 270–1, US Department of Commerce, Washington, 1965. All thermochemical data used are from this source.

  7. Goodeve, C. F., and Taylor, A. W. C., Proc. Roy. Soc., A, 154, 181 (1936).

    ADS  CAS  Google Scholar 

  8. Carter, R. J., Hamill, W. H., and Williams, jun., R. R., J. Amer. Chem. Soc., 77, 6457 (1955).

    Article  CAS  Google Scholar 

  9. Martin, R. M., and Willard, J. E., J. Chem. Phys., 40, 3007 (1964).

    Article  ADS  CAS  Google Scholar 

  10. Kuppermann, A., and White, J. M., J. Chem. Phys., 44, 4352 (1966).

    Article  ADS  CAS  Google Scholar 

  11. Kuppermann, A., Nobel Symp. 5 (Intersciences, New York, 1967).

  12. Gann, R. G., and Dubrin, J., J. Chem. Phys., 50, 535 (1969).

    Article  ADS  CAS  Google Scholar 

  13. Chou, C. C., and Rowland, F. S., J. Amer. Chem. Soc., 88, 2612 (1966).

    Article  CAS  Google Scholar 

  14. Penzhorn, R. D., and Darwent, B. de B., J. Phys. Chem., 72, 1639 (1968).

    Article  CAS  Google Scholar 

  15. Martin, R. M., and Willard, J. E., J. Chem. Phys., 40, 2999 (1964).

    Article  ADS  CAS  Google Scholar 

  16. Fenimore, C. P., and Jones, G. W., J. Phys. Chem., 62, 1578 (1958).

    Article  CAS  Google Scholar 

  17. Dixon-Lewis, G., Sutton, M. M., and Williams, A., Trans. Faraday Soc., 61, 255 (1965); Tenth Combustion Symp., 495 (1965).

    Article  CAS  Google Scholar 

  18. Baulch, D. L., Drysdale, D. D., and Lloyd, A. C., High Temperature Reaction Rate Data 1, University of Leeds (1968).

  19. Dixon-Lewis, G., Sutton, M. M., and Williams, A., J. Chem. Soc., 5724 (1965).

  20. Wolfgang, R., Progress in Reaction Kinetics, 3 (Pergamon, London, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

OLDERSHAW, G., PORTER, D. Direct Determination of Threshold Energies for the Reactions of Hydrogen Atoms with N2O and with CO2. Nature 223, 490–491 (1969). https://doi.org/10.1038/223490a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/223490a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing