Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

VEGF-induced phosphorylation of Bcl-2 influences B lineage leukemic cell response to apoptotic stimuli

Abstract

Post-translational modification of Bcl-2 protein has been described in a variety of cell models with effects varying from enhanced to abrogated function. In this study, we demonstrated that Bcl-2 was constitutively phosphorylated in several hematopoietic tumor cell lines and in primary ALL cells. Increased phosphorylation of Bcl-2 protein in the JM1 ALL cell line, achieved by expression of the phosphomimetic Bcl-2 construct S70E, enhanced JM1 cell chemoresistance. In contrast, initiation of JM1 cell apoptosis was coincident with dephosphorylation of Bcl-2 and elevated protein phosphatase 2A activity. S70E expression also diminished tBid-mediated cytochrome c release and blunted chemotherapy-induced activation of caspases-9 and -3 in JM1 cells. To determine whether soluble factors produced by stromal cells in the bone marrow influence phosphorylation of Bcl-2 protein, a panel of recombinant cytokines was evaluated. Of those tested, vascular endothelial growth factor (VEGF) induced phosphorylation of Bcl-2 protein and blunted cytochrome c release during chemotherapy or tBid treatment of ALL cells. In contrast, JM1 cells transfected with S70A, resulting in expression of Bcl-2 protein that cannot be phosphorylated, were not efficiently rescued from apoptosis by VEGF. These observations suggest that optimal protection of leukemic cells by VEGF may require activation of a pathway that includes Bcl-2 phosphorylation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Tsujimoto Y, Cossman J, Jaffe E, Croce CM . Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985; 228: 1440–1443.

    Article  CAS  PubMed  Google Scholar 

  2. McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57: 79–88.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997; 278: 1966–1968.

    Article  CAS  PubMed  Google Scholar 

  4. Grandgirard D, Studer E, Monney L, Belser T, Fellay I, Borner C et al. Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. EMBO J 1998; 17: 1268–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haldar S, Chintapalli J, Croce CM . Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res 1996; 56: 1253–1255.

    CAS  PubMed  Google Scholar 

  6. Ling YH, Liebes L, Ng B, Buckley M, Elliott PJ, Adams J et al. PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol Cancer Ther 2002; 1: 841–849.

    CAS  PubMed  Google Scholar 

  7. Haldar S, Jena N, Croce CM . Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA 1995; 92: 4507–4511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Korhonen L, Belluardo N, Mudo G, Lindholm D . Increase in Bcl-2 phosphorylation and reduced levels of BH3-only Bcl-2 family proteins in kainic acid-mediated neuronal death in the rat brain. Eur J Neurosci 2003; 18: 1121–1134.

    Article  PubMed  Google Scholar 

  9. Park JW, Choi YJ, Jang MA, Baek SH, Lim JH, Passaniti T et al. Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cells. Biochem Biophys Res Commun 2001; 286: 726–734.

    Article  CAS  PubMed  Google Scholar 

  10. Attalla H, Westberg JA, Andersson LC, Adlercreutz H, Makela TP . 2-Methoxyestradiol-induced phosphorylation of Bcl-2: uncoupling from JNK/SAPK activation. Biochem Biophys Res Commun 1998; 247: 616–619.

    Article  CAS  PubMed  Google Scholar 

  11. Lu K, Dempsey J, Schultz RM, Shih C, Teicher BA . Cryptophycin-induced hyperphosphorylation of Bcl-2, cell cycle arrest and growth inhibition in human H460 NSCLC cells. Cancer Chemother Pharmacol 2001; 47: 170–178.

    Article  CAS  PubMed  Google Scholar 

  12. Hu ZB, Minden MD, McCulloch EA . Phosphorylation of BCL-2 after exposure of human leukemic cells to retinoic acid. Blood 1998; 92: 1768–1775.

    CAS  PubMed  Google Scholar 

  13. May WS, Tyler PG, Ito T, Armstrong DK, Qatsha KA, Davidson NE . Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 alpha in association with suppression of apoptosis. J Biol Chem 1994; 269: 26865–26870.

    CAS  PubMed  Google Scholar 

  14. Deng X, Gao F, May Jr WS . Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood 2003; 102: 3179–3185.

    Article  CAS  PubMed  Google Scholar 

  15. Vantieghem A, Xu Y, Assefa Z, Piette J, Vandenheede JR, Merlevede W et al. Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis. J Biol Chem 2002; 277: 37718–37731.

    Article  CAS  PubMed  Google Scholar 

  16. Fortney JE, Zhao W, Wenger SL, Gibson LF . Bone marrow stromal cells regulate caspase 3 activity in leukemic cells during chemotherapy. Leuk Res 2001; 25: 901–907.

    Article  CAS  PubMed  Google Scholar 

  17. Mudry RE, Fortney JE, York T, Hall BM, Gibson LF . Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood 2000; 96: 1926–1932.

    CAS  PubMed  Google Scholar 

  18. Yamamoto Y, Mochida J, Sakai D, Nakai T, Nishimura K, Kawada H et al. Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system. Spine 2004; 29: 1508–1514.

    Article  PubMed  Google Scholar 

  19. Kalechman Y, Sotnik-Barkai I, Albeck M, Sredni B . Protection of bone marrow stromal cells from the toxic effects of cyclophosphamide in vivo and of ASTA-Z 7557 and etoposide in vitro by ammonium trichloro(dioxyethylene-O-O')tellurate (AS101). Cancer Res 1993; 53: 1838–1844.

    CAS  PubMed  Google Scholar 

  20. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 2003; 9: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  21. Gibson LF, Fortney J, Landreth KS, Piktel D, Ericson SG, Lynch JP . Disruption of bone marrow stromal cell function by etoposide. Biol Blood Marrow Transplant 1997; 3: 122–132.

    CAS  PubMed  Google Scholar 

  22. Gibson LF, Piktel D, Narayanan R, Nunez G, Landreth KS . Stromal cells regulate bcl-2 and bax expression in pro-B cells. Exp Hematol 1996; 24: 628–637.

    CAS  PubMed  Google Scholar 

  23. Ito T, Deng X, Carr B, May WS . Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 1997; 272: 11671–11673.

    Article  CAS  PubMed  Google Scholar 

  24. Ruvolo PP, Deng X, Ito T, Carr BK, May WS . Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem 1999; 274: 20296–20300.

    Article  CAS  PubMed  Google Scholar 

  25. Ruvolo PP, Deng X, May WS . Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 2001; 15: 515–522.

    Article  CAS  PubMed  Google Scholar 

  26. Blagosklonny MV . Unwinding the loop of Bcl-2 phosphorylation. Leukemia 2001; 15: 869–874.

    Article  CAS  PubMed  Google Scholar 

  27. Fang G, Chang BS, Kim CN, Perkins C, Thompson CB, Bhalla KN . ‘Loop’ domain is necessary for taxol-induced mobility shift and phosphorylation of Bcl-2 as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome c and apoptosis. Cancer Res 1998; 58: 3202–3208.

    CAS  PubMed  Google Scholar 

  28. Blagosklonny MV, Schulte T, Nguyen P, Trepel J, Neckers LM . Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res 1996; 56: 1851–1854.

    CAS  PubMed  Google Scholar 

  29. Mai H, May WS, Gao F, Jin Z, Deng X . A functional role for nicotine in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem 2003; 278: 1886–1891.

    Article  CAS  PubMed  Google Scholar 

  30. Deng X, Gao F, Flagg T, May Jr WS . Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci USA 2004; 101: 153–158.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas A, Pepper C, Hoy T, Bentley P . Bryostatin induced protein kinase C modulation, Mcl-1 up-regulation and phosphorylation of Bcl-2 resulting in cellular differentiation and resistance to drug-induced apoptosis in B-cell chronic lymphocytic leukemia cells. Leuk Lymphoma 2004; 45: 997–1008.

    Article  CAS  PubMed  Google Scholar 

  32. Jiffar T, kurinna S, Suck G, Carlson-Bremer D, Ricciardi MR, Konopleva M et al. PKC alpha mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2 phosphorylation. Leukemia 2004; 18: 505–512.

    Article  CAS  PubMed  Google Scholar 

  33. Narendran A, Ganjavi H, Morson N, Connor A, Barlow JW, Keystone E et al. Mutant p53 in bone marrow stromal cells increases VEGF expression and supports leukemia cell growth. Exp Hematol 2003; 31: 693–701.

    Article  CAS  PubMed  Google Scholar 

  34. Katoh O, Takahashi T, Oguri T, Kuramoto K, Mihara K, Kobayashi M et al. Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL-1 acting as an antiapoptotic factor. Cancer Res 1998; 58: 5563–5569.

    Google Scholar 

  35. Yi X, Yin XM, Dong Z . Inhibition of Bid-induced apoptosis by Bcl-2. tBid insertion, Bax translocation, and Bax/Bak oligomerization suppressed. J Biol Chem 2003; 278: 16992–16999.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant R01 HL56888 (LFG), the Dean and Charlene Hartley Leukemia Research Fund, and a WVU School of Medicine Internal Grant, Office of Research and Graduate Studies (LFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L F Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Chen, L., Benincosa, J. et al. VEGF-induced phosphorylation of Bcl-2 influences B lineage leukemic cell response to apoptotic stimuli. Leukemia 19, 344–353 (2005). https://doi.org/10.1038/sj.leu.2403643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403643

Keywords

This article is cited by

Search

Quick links