Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Accessibility of DNA in condensed chromatin to nuclease digestion

Abstract

RECENT evidence indicates that a large portion of the DNA of higher organisms is organised in compact nucleoprotein structures. Initial studies on nuclease digestion of chroma-tin showed that about half the nuclear DNA is present in the form of small resistant chromatin fragments1–3. Subsequent studies have shown that the sites of nuclease digestion are regularly spaced, and that, at the limit of digestion, the majority of the DNA that remains is in the form of relatively homogeneous small fragments, which vary from about 120 to 200 nucleotide pairs in length4–7. This concept of small repeating resistant structures in chromatin is further supported by electron microscope studies on chromatin fibres spread from hypotonically treated nuclei8 and from isolated chromatin9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clark, R. J., and Felsenfeld, G., Nature new Biol., 229, 101–106 (1971).

    Article  CAS  Google Scholar 

  2. Rill, R., and Van Holde, K. E., J. biol. Chem., 248, 1080–1083 (1973).

    CAS  PubMed  Google Scholar 

  3. Hewish, D. R., and Burgoyne, L. A., Biochem. biophys. Res. Commun., 52, 504–510 (1973).

    Article  CAS  Google Scholar 

  4. Oosterhof, D. K., Hozier, J. C., and Rill, R. L., Proc. natn. Acad. Sci. U.S.A., 72, 633–637 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Noll, M., Nature, 251, 249–251 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Lohr, D., and Van Holde, K. E., Science, 186, 165–166 (1975).

    Article  ADS  Google Scholar 

  7. Shaw, B. R., Corden, J. L., Sahasrabuddhe, C. G., and Van Holde, K. E., Biochem. biophys. Res. Commun., 61, 1193–1198 (1974).

    Article  CAS  Google Scholar 

  8. Olins, A. L., and Olins, D. E., Science, 183, 330–332 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Oudet, P., Gross-Bellard, A., and Chambon, P., Cell, 4, 282–290 (1975).

    Article  Google Scholar 

  10. Mazrimas, J. A., and Hatch, F. T., Nature new Biol., 240, 102–105 (1972).

    Article  CAS  Google Scholar 

  11. Mazrimas, J. A., and Hatch, F. T., Exp. Cell. Res., 63, 462–466 (1970).

    Article  CAS  Google Scholar 

  12. Hatch, F. T., and Mazrimas, J. A., Nucleic Acids Res., 1, 559–575 (1974).

    Article  CAS  Google Scholar 

  13. Bostock, C. J., and Christie, S., Chromosoma, 48, 73–87 (1974).

    Article  CAS  Google Scholar 

  14. Wray, W., in Methods in Cell Biology, 6 (edit. by Prescott, D. M.), 283–306 and 307–315 (Academic, New York and London, 1973).

    Google Scholar 

  15. Maio, J. J., and Schildkraut, C. L., J. molec. Biol., 24, 29–39 (1967).

    Article  Google Scholar 

  16. Bonner, W. M., and Laskey, R. A., Eur. J. Biochem., 46, 83–88 (1974).

    Article  CAS  Google Scholar 

  17. Southern, E. M., J. molec. Biol., 94, 51–69 (1975).

    Article  CAS  Google Scholar 

  18. Nathans, D., and Smith, H. O., A. Rev. Biochem., 44, 273–293 (1975).

    Article  CAS  Google Scholar 

  19. Marmur, J. J., J. molec. Biol., 3, 208–218 (1961).

    Article  CAS  Google Scholar 

  20. Crothers, D. M., Kallenbach, N. R., and Zimm, B. H., J. molec. Biol., 11, 802–820 (1965).

    Article  CAS  Google Scholar 

  21. Wingert, L., and Von Hippel, P. H., Biochim. Biophys. Acta, 157, 114–126 (1968).

    Article  CAS  Google Scholar 

  22. Van Holde, K. E., Sahasrabuddhe, C. G., and Shaw, B. R., Nucleic Acids Res., 1, 1579–1586 (1974).

    Article  CAS  Google Scholar 

  23. Baldwin, J. P., Boseley, P. G., and Bradbury, E. M., Nature, 253, 245–249 (1975).

    Article  ADS  CAS  Google Scholar 

  24. Hyde, J. E., and Walker, I. O., Nucleic Acid Res., 2, 405–421 (1975).

    Article  CAS  Google Scholar 

  25. Gilmour, S., New Scient., 14, February, 390–392 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BOSTOCK, C., CHRISTIE, S. & HATCH, F. Accessibility of DNA in condensed chromatin to nuclease digestion. Nature 262, 516–519 (1976). https://doi.org/10.1038/262516a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/262516a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing