Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cis–trans isomerisation in rhodopsin occurs in picoseconds

Abstract

IT has been believed for some time that the primary event in vision, the photochemical formation of bathorhodopsin, can be attributed to a cis–trans photoisomerisation1. Recently this model has been questioned. Busch et al. proposed that the less-than-6-ps formation time of bathorhodopsin from rhodopsin does not allow significant isomerisation of the 11-cis chromophore to an all-trans isomer2. This apparent difficulty with the cis–trans photoisomerisation model has prompted alternative models including (1) a mechanism involving deprotonation of the Schiff base nitrogen3, (2) proton transfer from the retinal methyl at position five to opsin4,5 (involving the shifting of double bonds along the polyene chain to form a ‘retro’ type retinal), and (3) a photoinduced electron transfer to retinal from a protein donor group6. We have approached this question by performing picosecond absorption kinetic measurements on the formation time of bathorhodopsin from bovine rhodopsin and isorhodopsin. The essence of this experiment is that bathorhodopsin, being the common photo-product of rhodopsin (11-cis retinal) and isorhodopsin (9-cis retinal) must be an isomerised product of at least one of these pigments, but could be a product of both pigments (that is, basically all-trans retinal). Thus formation time measurements of bathorhodopsin from the two primary pigments can settle whether isomerisation can take place on the picosecond time scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hubbard, R. & Kropf, A. Proc. natn. Acad. Sci. U.S.A. 44, 130–139 (1958).

    Article  CAS  ADS  Google Scholar 

  2. Busch, G. E., Applebury, M. L., Lamola, A. A. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 69, 2802–2806 (1972).

    Article  CAS  ADS  Google Scholar 

  3. Thomson, A. J. Nature 254, 178–179 (1975).

    Article  ADS  Google Scholar 

  4. Fransen, M. R. et al. Nature 260, 726–727 (1976).

    Article  CAS  ADS  Google Scholar 

  5. van der Meer, K., Mulder, J. J. C. & Lugtenburg, J. Photochem. Photobiol. 24, 363–367 (1976).

    Article  CAS  Google Scholar 

  6. Huppert, D., Rentzepis, P. M. & Kliger, D. S. Photochem. Photobiol. 25, 193–197 (1977).

    Article  CAS  Google Scholar 

  7. Wald, G. Science 162, 230–239 (1968).

    Article  CAS  ADS  Google Scholar 

  8. Ebrey, T. & Honig, B. Q. Rev. Biophys. 8, 124–184 (1975).

    Article  Google Scholar 

  9. Honig, B. & Ebrey, T. A. Rev. Biophys. Bioengng 3, 151–177 (1974).

    Article  CAS  Google Scholar 

  10. Hong, K. & Hubbell, W. L. Biochemistry 12, 4517–4523 (1973).

    Article  CAS  Google Scholar 

  11. Oseroff, A. R. & Callender, R. H. Biochemistry 13, 4243–4248 (1974).

    Article  CAS  Google Scholar 

  12. Dartnall, H. J. A. in Handbook of Sensory Physiology, V11/1, 122–145 (1972).

    Google Scholar 

  13. Rosenfeld, T., Honig, B., Ottolenghi, M., Hurley, J. & Ebrey, T. G. Pure appl. Chem. 49, 341–351 (1977).

    Article  CAS  Google Scholar 

  14. Ricard, D., Lowdermilk, W. H. & Ducuing, J. Chem. Phys. Lett. 16, 617–621 (1972).

    Article  CAS  ADS  Google Scholar 

  15. Callender, R. H. & Honig, B. A. Rev. Biophys. Bioengng. 6, 33–55 (1977).

    Article  CAS  Google Scholar 

  16. Mathies, R., Oseroff, A. R., Freedman, T. B. & Stryer, L. in Tunable Laser Applications (eds Jaeger, T., Stokseth, P. & Mooradian, A. (Springer, New York, in the press).

  17. Mathies, R., Freedman, T. B. & Stryer, L. molec. Biol. 109, 367–372 (1977).

    Article  CAS  Google Scholar 

  18. Mathies, R., Oseroff, A. R. & Stryer, L. Proc. natn. Acad. Sci. U.S.A. 73, 1–5 (1976).

    Article  CAS  ADS  Google Scholar 

  19. Warshel, A. Nature 260, 679–683 (1976).

    Article  CAS  ADS  Google Scholar 

  20. Yoshizawa, T. & Wald, G. Nature 197, 1279–1286 (1963).

    Article  CAS  ADS  Google Scholar 

  21. Duguay, M. A. & Hansen, J. W. Appl. Phys. Lett. 15, 192–194 (1969).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GREEN, B., MONGER, T., ALFANO, R. et al. Cis–trans isomerisation in rhodopsin occurs in picoseconds. Nature 269, 179–180 (1977). https://doi.org/10.1038/269179a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269179a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing