Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The relationship between tonicity and flagellar length

Abstract

THE manner in which a cell regulates the size and number of its organelles is not fully understood. We have studied the regulation of flagellar length. Flagella are organelles involved in cellular motility and sensory transduction1, and in standardised conditions, the flagella of a given species are constant in length and number. Thus, taxonomists include these characteristics in species descriptions2. The organism we are investigating is the unicellular biflagellate green alga Chlamydomonas reinhardi, in which the two flagella are of equal length2. If the flagella of Chlamydomonas are amputated, they regenerate to their original length in approximately 90 min (ref. 3). If only one flagellum is removed the remaining organelle shrinks while the new flagellum is elongating, until both are of the same length. At this point both organelles proceed to elongate, stopping when the normal length is reached3,4. Resorption of organelles containing microtubules has been shown to occur under a number of conditions in different organisms5. Recently it has been shown that the flagella of Chlamydomonas can be caused to shorten by a variety of agents such as pyrophosphate6–8, chelators6, halo-thane9 and other salt solutions6,10,11. This large variety of substances led us to study the effects of tonicity, per se, on flagellar length.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Solter, K. M. & Gibor, A. Nature 265, 444–445 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Gerloff, J. Arch Protistenk. 94, 311–502 (1940).

    Google Scholar 

  3. Rosenbaum, J. L., Moulder, J. E. & Ringo, D. L. J. Cell Biol. 41, 600–619 (1969).

    Article  CAS  Google Scholar 

  4. Coyne, B. & Rosenbaum, J. L. J. Cell Biol. 47, 777–781 (1970).

    Article  CAS  Google Scholar 

  5. Bloodgood, R. A. Cytobios 9, 143–161 (1974).

    Google Scholar 

  6. Quader, H., Cherniack, J. & Filner, P. P. Physiol. 59 (Suppl.), 19a (1977).

    Google Scholar 

  7. Handa, A. K., Cherniack, J. & Filner, P. J. Cell Biol. 75, 285a (1977).

    Google Scholar 

  8. Cherniack, J., and Filner, P. P. Physiol. 61 (Suppl.), 30a (1978).

    Article  Google Scholar 

  9. Telser, A. Exptl. Cell Res. 107, 247–252 (1977).

    Article  CAS  Google Scholar 

  10. Lefebvre, P. A. & Rosenbaum, J. L. J. Cell. Biol. 75, 293a (1977).

    Google Scholar 

  11. Dentler, W. L. & Rosenbaum, J. L. J. Cell Biol. 74, 747–759 (1977).

    Article  CAS  Google Scholar 

  12. Solter, K. M. & Gibor, A. Plant Sci. Lett. 8, 227–231 (1977).

    Article  CAS  Google Scholar 

  13. Ray, D. A., Solter, K. M. & Gibor, A. Expl Cell Res. 114, 185–189 (1978).

    Article  CAS  Google Scholar 

  14. Kilburn, K. H., Hess, R. A., Thurston, D. J. & Smith, T. J. J. Ultrastruct. Res. 60, 34–43 (1977).

    Article  CAS  Google Scholar 

  15. McVittie, A. Genet. Res. 9, 157–164 (1972).

    Article  Google Scholar 

  16. McVittie, A. J. gen. Microbiol. 71, 525–540 (1972).

    Article  CAS  Google Scholar 

  17. Farrell, K. W. J. Cell Sci. 20, 639–654 (1976).

    CAS  PubMed  Google Scholar 

  18. Gorovsky, M. A., Carlson, K. & Rosenbaum, J. L. Analyt. Biochem. 35, 359–370 (1970).

    Article  CAS  Google Scholar 

  19. Nelsen, E. M. Expl Cell Res. 94, 152–158 (1975).

    Article  CAS  Google Scholar 

  20. Johnson, L. P. in The Biology of Euglena, I (ed. Buetow, D. E.), 1–25 (Academic, New York, 1968).

    Google Scholar 

  21. Quader, H., Cherniak, J. & Filner, F. Expl Cell Res. 113, 295–301 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SOLTER, K., GIBOR, A. The relationship between tonicity and flagellar length. Nature 275, 651–652 (1978). https://doi.org/10.1038/275651a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275651a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing