Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dispersion of the ras family of transforming genes to four different chromosomes in man

Abstract

Cellular transforming genes (c-onc) are evolutionarily conserved vertebrate DNA segments which have been identified by two different approaches. One group of these cellular genes has been defined by their close homology to the transforming genes of the acute transforming retroviruses (v-onc)1–3. The second group, which represent activated forms of normal cellular genes1,4–9, has been detected by the ability of certain genes from animal and human tumours to induce focal transformation of tissue culture cells. Investigation of the possibility that the same cellular gene might have given rise to both a retroviral and a tumour transforming gene revealed that two of the c-onc genes identified by transfecting genomic DNA from human tumours to murine 3T3 fibroblasts were related to the transforming genes of two closely related acute transforming retroviruses, Harvey murine sarcoma virus (HaMuSV) and Kirsten murine sarcoma virus (KiMuSV)10–12. The transforming genes of HaMuSV and KiMuSV are derived from two members of a cellular onc gene family called ras, which is a rather divergent group of normal vertebrate genes originally found by analysis of the cellular homologues of the v-onc genes of HaMuSV and KiMuSV13. Four distinct human cellular homologues of v-Ha-ras and v-Ki-ras (designated c-Ha-ras and c-Ki-ras, respectively) have been characterized14; two (c-Ha-ras-1 and c-Ha-ras-2) are more closely related to v-Ha-ras, while the others (c-Ki-ras-1 and c-Ki-ras-2) are more closely related to v-Ki-ras. On ligation with a retroviral long terminal repeat, the c-Ha-ras-1 gene of both rat and human have been shown to induce in vitro transformation of mouse NIH 3T3 cells by DNA transfection15,16. This gene and c-Ki-ras-2 have also been isolated as activated transforming genes in human tumours10–12. An understanding of the genetic relationship of the c-ras genes and additional genetic loci possibly involved in neoplastic transformation would be greatly facilitated by placement of the ras genes on the human chromosome map. Using DNA analysis of rodent×human somatic cell hybrids, we have now assigned each of the human genes to a different chromosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cooper, G. M. Science 217, 801–806 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Klein, G. (ed.) Advances in Viral Oncology Vol. 1 (Raven, New York, 1982).

  3. Coffin, J. M. et al. J. Virol. 40, 953–957 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shih, C., Shilo, B., Goldfarb, M. P., Dannenberg, A. & Weinberg, R. A. Proc. natn. Acad. sci. U.S.A. 76, 5714–5718 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Cooper, G. M., Okenquist, S. & Silverman, L. Nature 284, 418–421 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Shih, C., Padhy, L. C., Murray, M. J. & Weinberg, R.A. Nature 290, 261–264 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Krontiris, T. G. & Cooper, G. M. Proc. natn. Acad. sci. U.S.A. 78, 1181–1184 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Perucho, M. et al. Cell 27, 467–476 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Lane, M. A., Sainten, A. & Cooper, G. M. Proc. natn. Acad. sci. U.S.A. 78, 5185–5189 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Der, C. J., Krontiris, T. G. & Cooper, G. M. Proc. natn. Acad. sci. U.S.A. 79, 3637–3640 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Nature 297, 474–478 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Santos, E., Tronick, S. R., Aaronson, S., Pulciano, S. & Barbacid, M. Nature 298, 343–348 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Ellis, R. W. et al. Nature 292, 506–511 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Chang, E. H., Gonda, M. A., Ellis, R. W., Scolnick, E. M. & Lowy, D. R. Proc. natn. Acad. sci. U.S.A. 79, 4848–4852 (1982).

    Article  ADS  CAS  Google Scholar 

  15. DeFeo, D. et al. Proc. natn. Acad. sci. U.S.A. 78, 3328–3332 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Chang, E. H., Furth, M. E., Scolnick, E. M. & Lowy, D. R. Nature 297, 479–484 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. O'Brien, S. J., Simonson, J. M. & Eichelberger, M. in Techniques in Somatic Cell Genetics (ed. Shay, J. W.) 342–370 (Plenum, New York, 1982).

    Google Scholar 

  18. Bobro, M. & Crass, J. Nature 251, 77–79 (1971).

    Article  ADS  Google Scholar 

  19. Lemons, R. S., Nash, W. G., O'Brien, S. J., Benveniste, R. E. & Sherr, C. J. Cell 14, 995–1005 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. McBride, O. W. et al. Nature 300, 773–774 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Chattopadhyay, S. K. et al. Nature 296, 361–363 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. McCoy, M. S. et al. Nature 302, 79–81 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Shimizu, K., Goldfarb, M., Perucho, M. & Wigler, M. Proc. natn. Acad. sci. U.S.A. 80, 383–387 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Deisseroth, A. et al. Cell 12, 205–218 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. Deisseroth, A. et al. Proc. natn. Acad. Sci. U.S.A. 75, 1456–1460 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Hutton, J. J. Biochem. Genet. 3, 507–515 (1969).

    Article  CAS  PubMed  Google Scholar 

  27. Popp, R. A. J. Hered. 60, 126–133 (1969).

    Article  CAS  PubMed  Google Scholar 

  28. Leder, A., Swan, D., Ruddle, F., D'Eustachio, P. & Leder, P. Nature 293, 196–199 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Popp, R. A., Lalley, P. A., Whitney, J.B.Ill & Anderson, W. F. Proc. natn. Acad. sci. U.S.A. 78, 6362–6366 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Rowley, J. D. Nature 301, 290–291 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Ohno, S. Nature 244, 259–262 (1973).

    Article  ADS  Google Scholar 

  32. Ohno, S. Reproduction in Mammals Vol. 6, 1–31 (Cambridge University Press, 1976).

    Google Scholar 

  33. Ryder, L. P. & Svejgaard, A. An. Rev. Genet. 15, 169–187 (1981).

    Article  CAS  Google Scholar 

  34. Svejgaard, A., Jersild, C., Staut-Nielsen, L. & Bodmer, W. F. Tissue Antigens 4, 95–105 (1974).

    Article  CAS  PubMed  Google Scholar 

  35. Lilly, F. & Pincus, T. Adv. Cancer Res. 17, 231 (1973).

    Article  Google Scholar 

  36. Simonetta, P. et al. Nature 300, 539–542 (1982).

    Article  Google Scholar 

  37. Tabin, C. J. et al. Nature 300, 143–149 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Reddy, E. P., Reynold, R. K., Santos, E. & Barbacid, M. Nature 300, 149–152 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Taparowsky, E. et al. Nature 300, 762–765 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Klein, G. Cell 321, 311–315 (1983).

    Article  Google Scholar 

  41. Martinville, B., de, Giacalone, J., Shih, C., Weinberg, R. A. & Franke, U. Science 219, 498–500 (1983).

    Article  ADS  PubMed  Google Scholar 

  42. Sakaguchi, A. et al. Science 219, 1081–1083 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, S., Nash, W., Goodwin, J. et al. Dispersion of the ras family of transforming genes to four different chromosomes in man. Nature 302, 839–842 (1983). https://doi.org/10.1038/302839a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302839a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing