Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequence-directed curvature of DNA

Abstract

DNAs from both prokaryotic1–4 and eukaryotic5–8 organisms have yielded restriction fragments which manifest markedly anomalous electrophoretic behaviour (reduced mobility) when run on polyacrylamide gels. We have shown previously9 that the abnormal electrophoretic behaviour of one such fragment is a consequence of stable curvature of the helix axis in solution. The molecules involved tend to contain oligo(dA)–oligo(dT) runs which are approximately in-phase with the helix repeat7,8,10; however, the precise structural elements responsible for DNA curvature have not been identified. One popular model11,12 for curvature invokes a non-coplanar ‘wedge-like’ conformation of ApA/TpT dinucleotide pairs. Despite a lack of direct evidence in support of this model, it has been used to provide quantitative estimates of curvature4,13,14. To critically evaluate the ApA wedge model, we have performed an electrophoretic analysis of a series of closely related DNA polymers in which oligo(dA)–oligo(dT) runs of different polarity were compared. We conclude that ApA dinucleotide wedges cannot account for DNA curvature. Therefore, quantitative estimates for ApA wedge deformations, based solely on apparent curvature, cannot be correct.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ross, W., Shulman, M. & Landy, A. J. molec. Biol. 156, 505–529 (1982).

    Article  CAS  Google Scholar 

  2. Stellwagen, N. C. Biochemistry 22, 6186–6193 (1983).

    Article  CAS  Google Scholar 

  3. Bossi, L. & Smith, D. M. Cell 39, 643–652 (1984).

    Article  CAS  Google Scholar 

  4. Zahn, K. & Blattner, F. R. Nature 317, 451–453 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Simpson, L. Proc. natn. Acad. Sci. U.S.A. 76, 1585–1588 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Challberg, S. S. & England, P. T. J. molec. Biol. 138, 447–472 (1980).

    Article  CAS  Google Scholar 

  7. Kidane, G. Z., Hughes, D. & Simpson, L. Gene 27, 265–277 (1984).

    Article  CAS  Google Scholar 

  8. Wu, H.-M. & Crothers, D. M. Nature 308, 509–513 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Hagerman, P. J. Proc. natn. Acad. Sci. U.S.A. 81, 4632–4636 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Hagerman, P. J. Biochemistry 24, 7033–7037 (1985).

    Article  CAS  Google Scholar 

  11. Trifonov, E. N. & Sussman, J. L. Proc. natn. Acad. Sci. U.S.A. 77, 3816–3820 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Marini, J. C., Levene, S. D., Crothers, D. M. & Englund, P. T. Proc. natn. Acad. Sci. U.S.A. 79, 7664–7668 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Levene, S. D. & Crothers, D. M. J. biomolec. Struct. Dyn. 1, 429–435 (1983).

    Article  CAS  Google Scholar 

  14. Ulanovsky, L., Bodner, M., Trifonov, E. N. & Choder, M. Proc. natn. Acad. Sci. U.S.A. 83, 862–866 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Caruthers, M. H. et al. Cold Spring Harb. Symp. quant. Biol. 47, 411–418 (1982).

    Article  CAS  Google Scholar 

  16. Sproat, B. S. & Gait, M. J. in Oligonucleotide Synthesis, A Practical Approach (ed. Gait, M. J.) 83–114 (IRL, Washington, DC, 1984).

    Google Scholar 

  17. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagerman, P. Sequence-directed curvature of DNA. Nature 321, 449–450 (1986). https://doi.org/10.1038/321449a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321449a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing