Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of protein kinase C augments evoked transmitter release

Abstract

In view of the emerging role of the phosphoinositide system in cellular communication1,2 we examined its involvement in quantal transmitter release, which is a key element in synaptic transmission3. Transmitter release is normally activated by an increase in intracellular calcium, achieved either by entry of calcium ions through the presynaptic membrane4,5 or by intracellular calcium liberation6. One of the targets of the phosphoinositide signalling system is the enzyme protein kinase C (PKC), which can be activated experimentally by tumour promoting phorbol esters, including 12-O-tetradecanoyl phorboI-13-acetate (TPA)7. Such activation of PKC may be implicated in transmitter release in two ways. First, phorbol esters were found to increase secretion8–13 and enhance calcium currents14,15; it might therefore be expected that they would increase synaptic transmitter release. But phorbol esters also inhibit the calcium current in dorsal root ganglion neurones16. We report that the phorbol ester TPA augments synaptic transmission at the neuromuscular junction by increasing transmitter liberation. Activation of PKC also deepens synaptic depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Hirasawa, K. & Nishizuka, Y. A. Rev. Pharmac. Toxicol. 25, 147–170 (1985).

    Article  CAS  Google Scholar 

  3. Katz, B. Sherrington Lecture No. 10 (Liverpool University Press, 1969).

    Google Scholar 

  4. Katz, B. & Miledi R. J. physiol., Lond. 203, 689–706 (1969).

    Article  CAS  Google Scholar 

  5. Augustine, G. J., Charlton, M. P. & Smith, S. J. Physiol., Lond. 367, 163–181 (1985).

    Article  CAS  Google Scholar 

  6. Rahamimoff, R., Lev-Tov, A., Meiri, H., Rahamimoff, H. & Nussinovitch, I. Monogr. Neural. Sci. 7, 3–18 (1980).

    CAS  PubMed  Google Scholar 

  7. Castagna, M. et al. J. biol. Chem. 257, 7847–7851 (1982).

    CAS  Google Scholar 

  8. Rink, T. J., Sanchez, A. & Hallan, T. J. Nature 305, 317–319 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Kojima, I., Lippes, H., Kojima, K. & Rasmussen, H. Biochem. biophys. Res. Commun. 116, 552–562 (1983).

    Article  Google Scholar 

  10. Zawalich, W., Brown, C. & Rasmussen, H. Biochem. biophys, Res. Commun. 117, 448–455 (1983).

    Article  CAS  Google Scholar 

  11. Tanaka, C., Taniyama, M. & Kusunoki, M. FEBS Lett. 175, 165–169 (1984).

    Article  CAS  Google Scholar 

  12. Katakami, Y., Kaibuchi, K., Sawamura, M., Takai, Y. & Nishizuka, Y. Biochem. biophys. Res. Commun. 121, 573–578 (1984).

    Article  CAS  Google Scholar 

  13. Valenca, M. M., Conte, D. & Negro-Vilar, A. Brain Res. Bulletin 15, 657–659 (1985).

    Article  CAS  Google Scholar 

  14. DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P. & Kaczmarek, L. K. Nature 313, 313–316 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Farley, J. & Auerbach, S. Nature 319, 220–223 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Rane, S. G. & Dunlap, K. Proc. natn. Acad. Sci. U.S.A. 83, 184–188 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Kraft, A. S. & Anderson, W. B. Nature 301, 621–623 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Wolf, M., LeVine, H., May, W. S., Cuatrecasas, P. & Sahyoun, N. Nature 317, 546–549 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Sano, K., Takai, Y., Yamanishi, J. & Nishizuka, Y. J. biol. Chem. 258, 2010–2013 (1983).

    CAS  PubMed  Google Scholar 

  20. Kelleher, D. J., Pessin, J. E., Ruoho, A. E. & Johnson, G. L. Proc. natn. Acad. Sci. U.S.A. 81, 4316–4320 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Leeb-Lundberg, L. M. F. et al. Proc. natn. Acad. Sci. U.S.A. 82, 5651–5655 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Burgess, S. K. et al. J. Cell Biol. 102, 312–319 (1986).

    Article  CAS  Google Scholar 

  23. DeRiemer, S. A., Greengard, P. & Kaczmarek, L. K. J. Neurosci. 5, 2672–2676 (1985).

    Article  CAS  Google Scholar 

  24. Geron, N. & Meiri, H. Biochim. biophys. Acta 819, 258–262 (1985).

    Article  CAS  Google Scholar 

  25. del Castillo, J. & Katz, B. J. Physiol., Lond. 124, 560–573 (1954).

    Article  CAS  Google Scholar 

  26. Cuthbertson, K. S. R. & Cobbold, P. H. Eur. J. cell Biol. 14, Suppl. 1 (1983).

  27. Cuthbertson, K. S. R. & Cobbold, R. H. Nature 316, 541–542 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Publicover, S. J., Brain Res. 333, 185–187 (1985).

    Article  CAS  Google Scholar 

  29. Eusebi, F., Molinaro, M. & Caratsch, C. G. Pflügers Arch. ges. Physiol. 406, 181–183 (1986).

    Article  CAS  Google Scholar 

  30. Baraban, J., Snyder, S. & Alger, B. Proc. natn. Acad. Sci. U.S.A. 82, 2538–2542 (1985).

    Article  ADS  CAS  Google Scholar 

  31. Alkon, D. L. et al. Biochem. biophys. Res. Commun. 134, 1245–1253 (1986).

    Article  CAS  Google Scholar 

  32. Eccles, J. C., Katz, B. & Kuffler, S. W. J. Neurophysiol. 4, 362–387 (1941).

    Article  Google Scholar 

  33. Takeuchi, A. Jap. J. Physiol. 8, 102–113 (1958).

    Article  CAS  Google Scholar 

  34. Otsuka, M., Endo, M. & Nonomura, Y. Jap. J. Physiol. 12, 573–584 (1962).

    Article  CAS  Google Scholar 

  35. Thies, R. E. J. Neurophysiol. 28, 427–442 (1965).

    Article  CAS  Google Scholar 

  36. Betz, W. J. J. Physiol. Lond. 206, 629–644 (1970).

    Article  CAS  Google Scholar 

  37. Nestler, E. J., Walaas, S. I. & Greengard, P. Science 225, 1357–1364 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapira, R., Silberberg, S., Ginsburg, S. et al. Activation of protein kinase C augments evoked transmitter release. Nature 325, 58–60 (1987). https://doi.org/10.1038/325058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing